
NASA Contractor Report 181678

Advanced Information Processing System:
Input/Output Network Mangement Software

Gail Nagle

Linda Alger
Alexander Kemp

THE CHARLES STARK DRAPER LABORATORY, INC.

CAMBRIDGE, MA 02139

Contract NAS1-17666
MAY 1988

IIiASA_CR- 181638) ID_ l_Cgg I[IC[.[IIIO_
I_I/_CESSI_G SI£TEB" ._I_U'g/OUT_UI[|[_tORK
AlJgGEBEIt 50_f_l_E- {l_t:apex: (Charles Stark)

CSCL 09B
La_. } 288 P G3/62

_88-29q2 1

N/ A
Nahonal Aeronauhcs and

Space Admrn_stration

Langley Research Center

Hampton, Virginia 23665-5225

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS .. v

lo INTRODUCTION , 1

1.1 AI_ Architechn'e ... 1

1.1.1 AIPS Networks .. 4

1.2 AIPS System Software ... 5

1.2,1 AIPS Software Design .. 5

1.2.2 AIPS System Software Overview ... 5

1.2.2.1 Local System Services .. 7

1.2.2.2 Intercomputer Services .. 9

1.2.2.3 System Manager ... 10

1.2.2.4 I/O System Services ... 11

. I/O N'EIWORK MANAGEMENT FUNCTIONAL REQUIREMENTS 15

2.1 Introduction .. 15

2.2 ItO Network Manager Interface to AIPS System Services 17

2.3 I/O Network Manager Interface to Subprocesses in I/O System Services 20

2.3.1 l/O_Utilities .. 20

2.3.2 I/O Database, s ... 21

2.3.3 I/O Netwock Status 22

2.3.4 VO Network Logs 23

2.3.5 I/O Network Status Monitor .. 23

2.4 Algoritlnnic Considerations .. 23

2.4.1 Network C_xowth ... 23

2.4.2 Fault Analysis .. 31

2.4.3 Reconfiguration .. 35

o I/O NETWORK MANAGEMENT SOFTWARE SPECIFICATIONS 41

3.1 I/O Network Manager ... 41

3.1.1 Network Growth ... 43

3.1.1.1 Establish Root Link ... 46

3.1.1.2 Adding Nodes to Network ... 49

3.1.1.3 Diagnostic Testing 51

3.1.1.4 Connecting Spare Root Links 53

3.1.1.5 Adding DIUs ... 54

3.1.1.6 Adding Remote GPCs .. 55

3.1.2 Network Maintenance ... 56

3.1.2.1 Network Status Collection .. 56

3.1.2.2 Network Fault Analysis ... 58

3.1.2.3 Network Reconfiguration ... 62

3.1.2.4 Spare Link Cycling .. 67

3.1.2.5 RestoringRepairedNetworkHardware............................ 69
3.1.3 NetworkManagerUtility Operations.. 70

3.1.3.1 EnablingandDisablingLinks.. 71
3.1.3.2 FormattingNodeMessages................ 73
3.1.3.3 RecordingStatusChangesfor FailedNodes....................... 74

3.2 I/O SequencerUtilities 75
3.2.1 Principlesof IOSOperation.. 75

3.2.1.1 IOSDataTypes.. 76
3.2.1.2 IOS InstructionsandPrograms.................................... .. 78
3.2.1.3 IOSAccessTypes.... . .. 81
3.2.1.4 IOS DualPortedMemoryUsage.................................... 87
3.2.1.5 IOSLow LevelUtilities... 91

3.2.2 IOSInitialization.................. ... 94
3.2.3 IOSTesting... 95

3.2.3.1 DPMMemoryTests... 95
3.2.3.2 Testsfor CorrectIOSOperation..................................... 99

3.2.4 IOSUtilities for I/O NetworkManager...................................... 102
3.2.4.1 Executionof NodeReconfigurationChains....................... 104
3.2.4.2 Executionof StatusCollectionChains............................. 109
3.2.4.3 Managementof StatusCollectionTransactions................... 111
3.2.4.4 Testingfor Presenceof BabbleronNetwork..................... 114

3.3 1/O Network Databases... 115
3.3.1 I/O CentralDatabase.. 115
3.3.2 I/O LocalDatabase.. 117

3.4 I/ONetwork Status... 118
3.4.1 NetworkHardwareStatus... 119
3.4.2 LogicalStatus....122

3.5 I/O NetworkLogs.. 123
3.5.1 I/O ErrorLog.. 123
3.5.2 I/O EventLog ... 124

3.6 I/ONetworkStatusMonitor... 124
3.7 I/O NetworkDataI)ictlonary............... ... 126

4. ADAIMPLEMENTATION OFTHE I/O NETWORK MANAGER 139

o CONCLUSIONS AND RECOMMENDATIONS 235

5.1 Testing Of Network Manager Software .. 235

5.2 Future Work ... 235

6. REFERENCES .. 239

APPENDIX A: GI.OSSARYOFI/O_'IERS_ A-1

APPENDIX B: I/O SERVICE OPERATING R_: NETWORK TOPOLOGY,

ii

APPENDIX C:

APPENDIX D:

GPC CONNECI'IVlTk' AND I/O REQUEST DEFINITION B- 1

INPUT/OUTPUT SEQUENCER (IOS) C-1

NODE SPECIFICATION .. D-1

°o°

111

LIST OF ILLUSTRATIONS

Figure. Title Page

1. AIPS Distributed Configuration .. 3

2. AIPS System Design Approach .. 6

3. Centralized AIPS Configuration .. 7

4. Top Level View Of System Services ... 8

5. Local System Services 9

6. Inter-Computer Services ... 10

7. System Manager 12

8. I/O System Services .. 13

9. I/O Network With Root Links To Two GPCs .. 16

10. Data Flow Diagram of I/O Network Management Software 18

11. The Network Growth Algorithm ... 25

12. No Fault Growth ... 27

13. Network Growth Used To Isolate A Babbling Node.. .. 28

14. Identifying A Failed Link _.. 35

15. RemovingA Node And Reconnecting Its Branches 39

16. IOS Instruction Format 79

17. FTP Address Lines .. 83

18 IOS/DPM Functional Memory Map, 84

19. IOS Read Access Memory Map .. 86

20. I/O Network Display .. 126

_RI!EEDING PAGE BLANK NOT

V

_. |1/

1.0 INTRODUCTION

This purpose of this document is to provide the software requirements and specifications

for the Input/Output Network Management Services for the Advanced Information

Processing System. This introduction and overview section is provided to briefly outline

the overall architecture and software requirements of the AIPS system before discussing the

details of the design requirements and specifications of the/kIPS I/O Network Management

software. Section 1.i is a brief overview of the AIPS architecture followed by a more

detailed description of the network architecture. Section 1.2 provides an introduction to the

AIPS system software.

1.1 AIPS Arehiteetm-e

The Advanced Information Processing System is designed to provide a fault- and damage-

tolerant data processing architecture, which can serve as the core avionics system for a

broad range of aerospace vehicles, for which NASA has direct or supporting research and

development responsibilities. These applications include manned and unmanned space

vehicles and platforms, deep space probes, commercial transports, and tactical military
aircraft.

AIPS is a multicomputer architecture composed of hardware and software 'building blocks'

that can be configured to meet a broad range of application requirements. The hardware

building blocks are fault-tolerant, general purpose computers, fault- and damage-tolerant

inter-computer and input/output networks, and interfaces between the networks and the

general purpose computers (GPCs). The software building blocks are the system software

modules: local system services, input/output system services, inter-computer system

services and the system manager. This system software provides the traditional services

necessary in a real-time computer such as task scheduling and dispatching, communication

with sensors and actuators, etc. The software also supplies those services necessary in a

distributed system such as inter-function communication across processing sites,

management of local and distributed redundancy, management of networks, and migration

of functions between processing sites.

The Advanced Information Processing System consists of a number of computers located

at processing sites which may be physically dispersed throughout the vehicle. These

processing sites are linked together by a reliable and damage tolerant data communication

'bus', called the Inter-Computer Bus (IC) bus. A computer at a given processing site may

have access to varying numbers and types of Input/Output (I/O) 'buses' which are separate

from the IC bus. The I/O buses m _y i_e global, regional or local in nature. Input/Output

devices on the global I/O bus are available to all, or at least a majority, of the AIPS

computers. Regional buses connect I/O devices in a given region to the processing sites

located in their vicinity. Local buses connect a computer to the I/O devices dedicated to that

computer. Additionally, I/O devices may be connected directly to the internal bus of a

processorandaccessedasthoughtheI/O devicesresidein the computer memory (memory

mapped I/O). Both the I/O buses and the IC bus are time division multiple access

contention buses. Figure 1 shows the laboratory engineering model for a distributed AIPS

configuration. This distributed AIPS configuration includes all the hardware and software

building blocks mentioned earlier and was conceived to demonstrate the feasibility of the

AIPS architecture.

The laboratory configuration of the distributed AIPS system shown in Figure 1 consists of

four processing sites. Each processing site has a General Purpose Computer. GPCs may

be simplex or they may be Fault Tolerant Processors (FTPs) of varying redundancy levels.

Of the four FTPs, one is simplex, one is duplex, and two are triplex processors. A FTP

may also be quadruply redundant but none was fabricated for the AIPS laboratory

demonstration. The redundant FTPs are built such that they can be physically dispersed for

damage tolerance. Each of the redundant channels of a FTP could be as far as 5 meters

from other channels of the same FTP.

The GPCs are all interconnected by a triplex circuit switched inter-computer (IC) network.

Each network layer forms a full two way 'virtual bus' as explained in the next subsection.

The three network layers are totally independent and are not cross-strapped to each other.

In each network layer there is a circuit switched node for each processing site. Thus every

processing site is serviced by three nodes of the IC network. GPCs are designed to receive

data on all three layers of the network. The capability of a GPC to transmit on the network,

on the other hand, depends on the GPC redundancy level. Triplex FTPs are provided the

capability to transmit on all three layers, duplex FTPs on only two of the three layers, and

simplex processors on only a single layer. In duplex and triplex FTPs, a given processor

can transmit on only one network layer. Thus malicious behavior of a processor can only

disrupt one layer.

The IC network and the GPC interfaces into the network are designed in strict accordance

with the fault-tolerant systems theory. Thus an arbitrary random hardware fault, including

Byzantine faults, anywhere in the system can not disrupt communication between triplex

FTPs. In other words, the triplex IC network, in conjunction with the GPC interfaces into

the network, provide error-masking capability for inter-GPC communications between

triplex computers.

The laboratory demonstration of the Input/Output network is mechanized using a 15 node

circuit switched network that interfaces with each of the GPCs on 1 to 6 nodes depending

on the GPC redundancy level. The 15 I/O nodes can be configured in the laboratory as

global, regional, and local ' _r/,) networks to demonstrate various dimensions of the AIPS I/O

concept. Further details of the network architecture are described in the following
subsection.

2

Figure L AIPS Distributed Configuration

3

1.1.1 AIPS Networks

For communication between GPCs and between a GPC and I/O devices, a damage and

fault tolerant network is employed. The network consists of a number of full duplex links

that are interconnected by circuit switched nodes. In steady state, the circuit switched

nodes route information along a fixed communication path, or 'virtual bus', within the

network, without the delays which are associated with packet switched networks. Once the

virtual bus is set up within the network the protocols and operation of the network are

similar to typical multiplex buses. Every transmission by any subscriber on a node is heard

by all the subscribers on all the nodes just as if they were all linked together by a linear bus.

Although the network performs exactly as a bus, it is far more reliable and damage tolerant

than a linear bus. A single fault or limited damage can disable only a small fraction of the

virtual bus, typically a node or a link connecting two nodes. Such an event does not

disable the network, as would be the case for a linear bus. The network is able to tolerate

such faults due to the richness of interconnections between nodes. By reconfigudng the

network around the faulty element, a new virtual bus is constructed. Except for such

reconfigurations, the structure of the virtual bus remains static.

The nodes are sufficiently intelligent to recognize reconfiguration commands from the

network manager, which is resident in one of the GPCs. The network manager performs

the necessary diagnostics to identify the failed element and can change the bus topology by

sending appropriate reconfiguration commands to the affected nodes.

Damage caused by weapons or electrical shorts, overheating, or localized fine would affect

only subscribers in the damaged portion of the vehicle. The rest of the network, and the

subscribers on it, can continue to operate normally. If the sensors and effectors are

themselves physically dispersed for damage tolerance, and the damage event does not affect

the inherent capability of the vehicle to continue to fly, then the digital system would

continue to function in a normal manner or in some degraded mode as determined by

sensor/effector availability.

Fault isolation is much easier in the network than in multiplex buses. For example, a

remote terminal transmitting out of turn, a rather common failure mode which will totally

disable a linear bus, can be easily isolated in the network through a systematic search where

one terminal is disabled at a time. Furthermore, for networks of moderate size, up to 50

nodes, most faults can be detected, isolated and the network reconfigured in milliseco/_ds.

The network can be expanded very easily by linking the additional nodes to the spare ports

in existing nodes. In fact,) ,,des and subscribers to the new nodes (I/O devices or GPCs)

can even be added without shutting down the existing network. In bus systems, power to

buses must be turned off before new subscribers or remote terminals can be added.

Finally, there are no topological constraints, as are encountered with linear or ring buses.

In fact, these are simply subsets of the fault-tolerant network architecture.

4

1.2 AIPS System Software

The AIPS system software along with the hardware has been designed to provide a virtual

machine architecture that hides hardware redundancy, hardware faults, multiplicity of

resources, and disuibuted system characteristics f_om the applications programmer. The

following section, 1.2.1, is a discussion of the approach that is used for the AIPS system

software design. Section 1.2.2 presents a brief high level description of the AIPS system

services that axe provided for the AIPS system user.

1.2.1 AIPS Software Design Approach

The approach used to design the AIPS system software is part of the overall AIPS system

design methodology. An abbreviated form of this system design methodology is shown in

Figure 2. This methodology began with the application requirements and eventually led to

a set of architectural specifications. The architecture was then partitioned into hardware and

software functional requirements. This report documents the software design approach

starting from functional requirements, to software specifications, to Ada implementation as

applied to Input/Output Network Management software. The I/O Network Management

software is a part of the I/O System services.

Hardware and softwarefortheAIPS architectureisbeing designed and implemented intwo "

phases. The first phase is the centralized AIPS configuration. The centralized AIPS

architecture, as shown in Figure 3, is configured as one triplex Fault Tolerant Processor

(FTP), an Input/Output network and the interfaces between the FTP and the network,

referred to as input/output sequencers (IOScs). The laboratory demonstration of the

input/output network consists of 15 circuit switched nodes which can be configured as

multiple local I/O networks connected to the triplexGPC. For example, the I/O network

may be configured as one 15 node network as shown in Figure 3, or as three 5 node

networks. The software building.blocks that have been designed and implemented for the

AIPS centralizedarchitectureincludelocalsystem servicesand I/O system services.The

followingsubsection1.2.2willgive an overview of allthe AIPS software buildingblocks.

The restof thisdocument, Sections2 thru 6, focuses on the software designed for the

redundancy management of the I/O networks.

1.2.2 AIPS System Software Overview

AIPS system software provides the following AIPS System Services (Figure 4): local

system services,communication services,system management, and I/O system services

The system software is being developed in Ada. System services are modular and naturally

partitioned along hardware building blocks. The distributed AIPS configuration includes

5

Application

Requirements

AIPS

Specifications
&

Guidelines

stem
Funotion81

Requirements

rstem

Functional

Requirements

System
Specifications

System
Specifications

Services Services
Manager

Figure 2. AIPS System Design Approach

all the services. Specific versions of the system software for different applications can be

created by deleting services from this superset. Shared resource allocation and redundancy

management are implemented only once but not necessarily in the same General Purpose

Computer (GPC). The other system services are replicated in each GPC. The following is

a brief description of each of the services.

6

15-NODE I/O NETWORK

J

O
/

DIU

K3S

TRIPLEX FTP

Node

Active Link

Spare Link

Device Interface Unit

GPC/Network Interface (I/O Sequencer)

Figure 3. Centrali_ AIPS Configuration

1.2.2.1 Local System Services

The local system services provided in each GPC are: GPC initialization, real-time

operating system, local resource allocation, local GPC Fault Detection, Isolation, and

Reconfiguration (FDIR), GPC status reporting, and local time management (Figure 5).

7

SYSTEM
MANAGER

OPERATOR]

INTER
COMPUTER

SYSTEM
SERVICES

I/0
SYSTEM

SERVICES

Figure 4. Top Level View Of System Services

The function of GPC initialization is to bring the GPC to a known and operational state

from an unknown condition (cold start). GPC initialization synchronizes the CPs,

synchronizes the IOPs and resets or initializes the GPC hardware and interfaces (interval

timers, real time clock, interface sequencers, DUART, etc.) It makes the hardware state of

the redundant channels congruent by alignment of memory and control registers. It then

activates the system baseline software that is common to every GPC.

The AIPS real-time operating system supports task execution management including

scheduling according to priority, time and event occurrence, and is responsible for

dispatching, and task suspension and termination. It also supports memory management,

software exception handling and intertask communication between the companion

processors (IOP and CP). The AIPS operating system is resident on every CP and IOP in

the system. It uses the vendor supplied Ada Run Time System (RTS), and, in addition,

provides those extensions necessary for the AIPS real-time distributed operating system.

The GPC resource allocator coordinates and determines responsibility for any global or

migratable functions from the system resource manager. It also monitors commands from

the system resource manager to start or stop any function.

The GPC status reporter collects the status information from the local functions, the local

8

FUNCTION

• / lOCAL
X GPC IC STATUS
INrr CONFIG

s, c /co j

I
SYSTEM STATUS

¼
Figure 5. Local System Services

GPC FDIR, the local time manager, the IC system services and the I/O system services. It

updates its local data base and disseminates this status information to the system manager.

The GPC FDIR has the responsibility for detecting and isolating hardware faults in the

CPs, IOPs, and shared hardware. It is responsible for synchronization of the redundant

channels of the bi-proeessor FTP, and for disabling outputs of failed channel(s) through

interlock hardware. Since each channel of an FTP has two processors (bi-processor), the

synchronization software is responsible for the tight synchronism of both redundant groups

of processors. After synchronization, all CPs are executing the same machine language

instruction within a bounded skew, and all IOPs are executing the same machine language

instruction within a bounded skew. GPC FDIR logs all faults and reports status to the

GPC status reporter. It is responsible for the CPU hardware exception handling and

downmoding/upmoding hardware in response to configuration commands from the system

manager. It is also responsible for transient hardware fault detection and for running self

tests at the lowest priority in order to detect latent faults. This redundancy management

function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to keep the

local real time initialized and synchronized to the global real time. It updates local offset in

response to time broadcasts from the system time manager. It is responsible for reading the

real time clock and providing time services to all users.

1.2.2.2Inter-ComputerServices

The inter-computer services provide two functions: inter-computer (IC) user

communication services, that is, communication between functions not located in the same

GPC; and the IC network management (Figure 6).

REALLOC FUNCTION
FLAG ALLOCATION

• _-_ IC NEI_ORK
ICNgFWORK _'- -'_

CONHG " u,a-m-uo_mAr_u
t_MN_IC NETWORK_ IC ERROR

GPC STATUS

"_ OMMUNICATION v"_
LOCAL IC STATUS

Figure 6. Inter-Computer Services

The IC user communication service provides local and distributed inter-function

communication as a transparent service to the application user. It provides synchronous

and asynchronous communication, performs error detection and source congruency on

inputs, records and reports IC communication errors to IC network managers. Inter-

computer communication can be done in either point to point or broadcast mode and is

implemented in each GPC.

The IC network manager is responsible for the fault detection, isolation and reconfiguration

of the network. The AIPS distributed configuration consists of three identical, independent

IC network layers which operate in parallel to dynamically mask faults in a single layer and

provide reliable communication. There is one network manager for each network layer.

However, the three network managers do not need to reside in the same GPC. They are

responsible for detecting and isolating hardware faults in IC nodes, links and the IC

interface sequencer and for reconfiguring their respective network layer around any failed

elements. The network manager function is transparent to all application users of the
network.

1.2.2.3 System Manager

The system manager is a collection of system level services including the applications

monitor, the system resource manager, the system fault detection, isolation and

reconfigumtion (FDIR), and the system time manager (Figure 7).

10

The applications monitor interfaces with the applications programs and the AIPS system

operator. It accepts commands to migrate functions from one GPC to another, to display

system status, to change the state of the system by requesting a hardware element state

change, and to convey requests for desired hardware and software configurations to the

system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the

monitoring of the various triggers for function migration such as failure or repair of

hardware components, mission phase or workload change, operator or crew requests and

timed events. It reallocates functions in response to any of these events. It also designates

managers for shared resources and sets up the context manager data base in each GPC.

The system fault detection, isolation and reconfiguration (FDIR) is responsible for the

collection of status from the inter-computer (IC) network managers, the I/O network

managers, and the local GPC redundancy managers. It resolves confl cfing local fault

isolation decisions, isolates unresolved faults, correlates transient faults, and handles

processing site failures.

The system time manager along with each GPC local time manager has the job of

maintaining a common timebase throughout the system. The system time manager

indicates to the local time manager when to set its value of time. It also sends a periodic

signal to enable the local time manager to adjust its time to maintain synchronism with an

external time source such as the GPS Satellites or an internal source such as the real time

clock in the GPC which hosts the system time manager software.

1.2.2.4 I/O System Service

The I/O system service provides efficient and reliable communication between the user and

external devices (sensors and actuators). The I/O system service is also responsible for the

fault detection, isolation and reconfiguration of the I/O network hardware and

GPC/network interface hardware (input/output sequencers).

I/O system service is made up of three functional modules: I/O user interface, I/O

communication management and the I/O network manager (Figure 8).

The I/O user interface provides a user with read/write access to I/O devices or Device

Interface Units (DIUs), such that the devices appear to be memory mapped. It also gives

the user the ability to group I/O transactions into chains and I/O requests, and to schedule

I/O requests either as periodic tasks or on demand tasks.

The I/O communication manager provides the functions necessary to control the flow of

data between a GPC and the various I/O networks use:d by the GPC. It also performs

source congruency and error detection on inputs, voting on all outputs, and reports

11

communication errors to the I/O Network Manager. It is also responsible for the
managementof theI/O requestqueues.

OPERATOR INPUT

SYSTEM STATUS

CONFIG REQUEST

S

____ CONFIG RESPONSE

MANAGER

REALLOC FLAQ

IC STATUS
SYSTEM

FD1R

GPC STATUS

SUBSCRIBER I/O
ERROR LOG

FO NET
_IFIG CMND

CONFIG
COMMAND

TIME STATUS __TIME REQUESr

SYSTEM TIME
CONFIG

IC NETWORK

.CO_a_IGCMND
_k

Figure 7. System Manager

The I/O Network Manager is responsible for detecting and isolating hardware faults in I/O

nodes, links, and interface sequencers. The I/O network manager is also responsible for

reconfiguring the I/O network around any failed elements. The network manager function

is transparent to all application users of the network. Section 2 describes the functional

requirements and algorithms used for the network management software. Section 3 is the

software specification of the network management software, and Section 4 is a detailed

description of the Ada implementation of this software. Finally, Section 5 concludes with a

summary of results and suggestions for future work in this area.

12

IUS Database

"I\ _ /
/ \ _ vo

IOR _ / Servkes

s_=uo,= \ / sp=m=.o,,

--_=-
\ ---_] _UserIn_l unicatlon

XA / _ Manager Run Network

I/O Request ' ¢ I -I =osflc3
S eclfl _ Dynamic Result

IOR Ii_ ! Voted

gO Database

\
gO Network

Specification

Channel

&

,(/ s,_t=,
I/O Service I/O Status

Figure 8. I/O System Services

13

2.0 I/O NETWORK MANAGER FUNCTIONAL REQUIREMENTS

2.1 Introduction

AIPS Input/Output Networks axe briefly discussed in Section 1.1.1. Figure 9 shows an

AIPS configuration highlighting the features of an I/O Network. The figure shows an

AIPS system in which two GPCs are physically connected to an I/O Network. Each GPC

is connected to the network by means of two root links. The input/output operations on the

network are conducted by the I/O Sequencer (IOS) which is controlled by the GPC through

the Dual Ported Memory (DPM). The network shown consists of six nodes and four

Device Interface Units (DIUs). Sensors, actuators, displays and other I/O devices are

attached to the DIUs. The network exists to allow application programs executing on the

GPC to communicate in a highly reliable manner with these I/O devices. The high reliability

of the network is due to the fact that when a hardware component fails or is damaged by

some external event, the failed component can be isolated from the rest of the network and

communication can proceed along a new path in the network.

In the steady state, the communication path operates as ff it were a conventional, time

division multiplex bus. It differs from a linear bus in that the data is routed by circuit

switched nodes along one of several possible paths. Each node in a properly configured,

fault free network receives transmissions on exactly one of its enabled ports and then

retransmits this data from all its other enabled ports. Since the nodes are circuit switched,

the incoming data is not buffered. Hence, the network does not suffer from the

transmission delays associated with packet switched networkS. The nodes provide a

richness of spare interconnections which can be brought into service after a hardware fault

or damage event occurs. The network architecture provides coverage for many well known

failure modes which would Cause a standard linear bus to either fail completely or provide

service to a reduced subset of its subscribers. These failure modes include component

failures which result in babblers, i.e. subscribers which use the network in violation of

established turn-taking protocols and physical damage events which result in severed cables

or other component loss.

Once a properly functioning virtual bus has been established, the nodes used to form the

bus remain in the active network until a component fails or is damaged. The configuration

of these nodes varies slowly over time to allow spare links to be brought into active

service. In response to failures, this process reconfigures the communication path to

exclude the failed component.

The ability to reroute dat_. along different paths comes from the design of the node. An

AIPS node has five ports which can each be enabled or disabled. When the ports on either

end of a link are enabled, data is routed along that link of the network. In Figure 9 the

active links, i.e. those connecting two enabled ports, are shown as solid lines. The links

shown as dashed lines axe spares. A message wansmitted by the IOS in Channel A of

15

PRECEDING PAGE BLANK NOT FILMED

Channel C

GPC 1

1

DIU 1

2 3

DIU 2

DIU 3

4

6

5

DIU 4

lOS

Channel A

lOS

"//_////
Channel B Channel C

GPC 2
] -

Active Link

......... Spare Link

Figure 9. UO Network With Root Links To Two GPCs

GPC_I would f'trst reach Node 2. From there it would be simultaneously retransmitted to

Nodes 1, 5 and 4. From Node 1 it would be retransmitted to Node 3 but not to Node 6

since the h,K between Nodes 1 and 6 is a spare. From Node 3, the message would be

retransmitted to DIU_2 only. If the link connecting Nodes 1 and 2 were to be severed,

thereby interrupting service to DIU_2, the spare link between Nodes 3 and 4 could be

enabled to restore full service to all the DIUs on the network.

16

Another featureof the topology shown in the figure is the fact that GPC_2 is not actively

connected to the network. This is because the network shown is a local network, one

whose use is dedicated to a single GPC. However, if faults were to cause a degraded mode

of operation for GPC_I, the functions requiring access to the network could be migrated to

GPC_2. The physical connections to GPC_2 arc provided to support function migration.

However, this topology is also capable of supporting a regional network, i.e. one which is

shared among several GPCs simultaneously. If this were a regional network, GPC_2

would have an active root link to the network and both GPCs would then share the

resources of this network by contending for its use.

2.2 I/O Network Manager Interface to AIPS System Services

The I/O Network Manager is the software process responsible for establishing and

maintaining a communication path between processors (GPCs) and DIUs attached to the

I/O network under its control. Figure 10 presents a high level view of the I/O Network

Manager in relation to other software processes with which it interacts. The shaded regions

indicate the subprocesses of I/O System Services with which the I/O Network Manager

must interact. Non shaded regions are processes in other System Services. In particular,

the Resource Allocator is a subprocess within the System Manager and GPC FDIR and the

Operator Interface are part of Local System Services.

The Network Manager has two phases of operation: initialization and maintenance. Wheti

the Network Manager is called by the Resource Allocator to manage a network, it enters its

initialization phase of operation. The Manager's activity during this phase of operation is

dictated by the reason for its activation. If the Manager is activated to manage a previously

inactive network, or when a graceful function migration is not possible, the Manager

establishes a virtual bus within the network and performs a full set of diagnostic tests on

each IOS and nodal port in the network. At the end of this initialization process, a fully

tested communication path exists between all properly functioning nodes, DIUs, and

GPCs in the network. This path is then capable of supporting serial communication among

all functioning network subscribers. If the migration of a Network Manager from one GPC

to another can be effected gracefully, data from the deactivated Manager is transferred to

the newly activated Manager. Thus, if the Manager is activated as part of a graceful

function migration, the initialization phase can be reduced to a software component only,

followed by a diagnostic test of the existing network configuration. Network

reconfigumtion will only be necessary if this test uncovers faults in the network.

Having completed its initialization, this process notifies I/O Communication Services that

the network is in service and updates the status information on this network which is

available to other processes in the system. A potential user of this information is the System

Manager. The Network Manager then enters the maintenance phase of its operation.

17

] Unreachable
I I DIUs,
I] Spare Link

..... I INetwork
i_etworx u.) I _ropology

_ Status Spare Link
Chain Status

work Manager Network

__i_ Node Responses,

_y Error Report
_... Network
INOO_ INo(le ._

uutput input d

ets Restoration Entries

Allocator
Physical I/O Network

Display
I/OResource Log
Commands

Momtor

Network

Network
Status

Network
Status

Status
Command

Figure 10 Data Flow Diagram of I/O Network Management Software

During the maintenance phase of its operation, the Network Manager provides services on

demand to the Resource Allocator and to the I/O Communication Manager. The Resource

Allocator calls this process when it wishes to halt the management of this network from this

GPC. This may be to effect a function migration or to support routine system maintenance.

The I/O Communication Manager calls this process for one of three reasons: to repair a

suspected network fault, to bring a repaired node, link or IOS back online, or to routinely

retire an active link and replace it with a spare link. The last operation is called spare link

cycling.

18

Although networks which are grouped together to form an 1/O Service are operated in

parallel by the I/O Communications Manager when executing user chains or spare link

tests, this is not the case for a Network Manager. The I/O Communications Manager

controls simultaneous I/O activities on a set of networks in an 1/O Service, but the I/O

Network Manager has access to only one network. The Network Manager is responsible

for network maintenance, that is, for reconfiguring the network in response to a fault. It

must be possible to re,configure a network so that a failure in one member of an I/O Service

can be repaired without inhibiting communications in the other members which do not

have faults. Thus the operation of each Network Manager is completely independent of the

operation of any other Network Manager in the system. This feature is supported by the

protocol between the I/O Network Manager and the I/O Communication Manager. When a

network is being maintained, it is under the exclusive control of the Network Manager.

However, other networks in the I/O Service remain under the exclusive control of the

Communications Manager.

The protocol between the Network Manager and the 1/O Communication Manager to effect

a network repair operates as follows. Whenever the I/O Communication Manager detects a

communication error while using the network to conduct normal I/O operations for

application processes, it takes that network out of service and calls the Manager of that

network to repair the network. The I/O Communication Manager will not use this network

until the Network Manager has indicated that the network is repaired. When the Network

Manager is scheduled in response to a request from the I/O Communication Manager for

network maintenance, it becomes the sole user of the network until the repair is complete.

The Network Manager first executes a chain to collect some real time data from the

network. The chain requests each node in the network to report its status. The node should

respond with its current port configuration and the type of activity each port has seen since

the last time its status was read. This monitoring does not alter the node configuration. The

node status reports are processed to determine what type of failures, if any, are present in

the network.

The Network Manager can detect and repair the passive failure of a node or port, the

passive failure of an IOS, the failure of the channel connected to the active root link, a

network component which is babbling, a node which answers to addresses other than its

own, or a node which transmits on a disabled port. Once the failure mode has been

determined, an appropriate maintenance procedure is executed. The network is

reconfigured to remove the faulty component and restore communication to all non-failed

components in the network. Maintenance procedures are designed to reconfigure the

network in the fastest possible manner so as to restore use of the network to application

users as quickly as possible. After the reconfiguration of the network is complete, some

DIUs may be unreachable. A list of these unreachable DIUs is made available to the I/O

Communication Manager when the network is put back in service. This enables it to

deselect transactions to unreachable DIUs and to clear error counts against I/(3 devices

which were temporarily out of service due to network problems.

19

Sparelinkcycling employs a different protocol between the Network Manager and the I/O

Communication Manager. The Network Manager prepares a set of commands which can be

sent to the nodes whenever the network has available bandwidth for this operation. This set

of commands is sent to the nodes at the discretion of the I/O Communication Manager who

is also in charge of using the network to communicate with devices for application

programs. Thus, the network is not taken out of service to conduct this test and the results

of the test are processed by the Network Manager when there is available processing time

on the system for this purpose. A semaphore mechanism enforces mutual exclusion

between the two Managers for data access privileges to the node commands. All spare

links, including root links, are routinely cycled to determine whether or not they are

operating properly and can therefore be reliably called into service to reconfigure the

network after a failure of some active link. Cycling spare links provides greater fault

coverage than merely testing a link and then restoring the active link to service since all

parts are exercised for longer periods of time. Spare links are cycled at a rate commensurate

with the desired fault detection latency and the testing overhead.

The protocol used by the two Managers when restoring a failed link, node or IOS to service

depends on whether or not the restoration can be effected without transmitting messages to

nodes on the network. In the case of a link, the restoration does not require the

transmission of node commands on the network. Hence, the network is not taken out of

service during a restoration of this type. However, a node or an IOS can onlybe restored

by reconfiguring the network, and this can only be accomplished by using the network to

transmit commands to nodes. Thus, these types of restorations do require that the network

be taken out of service during the restoration and returned to service once it is complete.

It should be noted that the procedure for restoring failed components in the present

Network Manager design is not automatic. Once a component has been declared failed, it

remains out of service until the Network Manager is requested by the operator (via the I/O

Communication Manager) to restore the failed component. The Network Manager does not

test failed components periodically to determine if they have been repaired.

2.3 I/O Network Manager Interface to Subprocesses in I/O System Se_ices

The I/O Network Manager is supported in its operation by various subprocesses within I/O

System Services. These are shown in Figure 10 as shaded regions. The function of each

of these subprocess is discussed here.

2.3.1 I/O Sequencer Utilities

The operation of the I/O Sequencer (IOS) is described in detail in the IOS Specification

(Appendix D). The IOS is a specialized hardware unit designed to have direct access to the

serial I/O Networks of an AIPS system. Its primary purpose is to offload the IOP from the

20

work neededto transmitandreceivedata. While it operates asynchronously from the IOP,

it is nevertheless under software control. This control is exerted through a set of registers

which allow the IOP to know the state of the IOS and to issue commands to the IOS. The

IOS operates by executing a program which the IOP has previously stored in the Dual

Ported Memory (DPM) shared by the IOP and the IOS. It transmits data which also has

been stored in the DPM and in turn stores incoming data from the network in the DPM.

The IOS is also able to contend for network use for its IOP. Under no fault conditions,

transmissions to network nodes are always followed by responses from the nodes. A

transmit/response pair is called a transaction. A set of transactions which are grouped

together sequentially for rapid and uninterrupted transmission on the network is called a
chain. The IOS is said to execute a chain of transactions when it contends for network use

and then executes a program which sends and receives data on the network without

interruption from any other GPC subscriber to the network. The Network Manager

configures the network nodes by using the IOS to execute chains of transactions which

communicate to the nodes. It also uses the error detection capabilities of the IOS to help it

diagnose faults in the network.

Since primary function of the IOS is offloading the IOP from the low level aspects of serial

communications, it is undesirable to reload the dual ported memory with IOS programs and

static data, i.e. data which does not change for each chain execution since this takes IOP

processing time. Hence, the dual ported memory is organized to hold all necessary

programs and data used by the IOS.

2.3.2 I/O Databases

The I/O Network Databases serve as a repository of static information about I/O networks.

They contain a software description of the physical makeup of the I/O networks in the

system. They also contain the information necessary to map logical information related to

networks into its physical counterpart. For example, the logical identifier of a DIU would

be mapped to its physical address on a network. In the present implementation, the baseline

topology of an I/O network does not change in real time, i. e. the number of nodes, DIUs,

and GPCs in a network and the physical interconnections between them is fixed at run

time. Hence the information in the databases also does not change in real time either. The

databases also contain information about the organization of the I/O networks into I/O

Services.

The I/O Central Database holds information about every I/O network and every I/O Service

in the system. It is intended to support the use of mas_ rtorage which is accessible from

every GPC in the system. While there is only one logical L'O Central Database in any AIPS

system, an I/O Local Database resides on every GPC but only contains information about

the I/O networks to which that GPC is physically connected. When no mass storage device

is included in an AIPS architecture, the I/O Central Database will reside on every GPC. It

21

shouldbenoted that thereis no duplicationof datain this case;the I/O Local Database
referencestheI/O CentralDatabasedirectly.

TheI/O Local Database references the I/O Central Database during program initialization to

obtain information about the networks to which its GPC is connected. Since one

characteristic of mass storage devices is a long access time, these accesses may be relatively

slow. Because speed is not important during system initialization, this slow access time is

not a problem. Using this information, the I/O Local Database deduces other information

about its networks and stores all this data locally. Deducing information about networks

whenever possible from more fundamental data has some advantages. It reduces the

amount of information that must be hand generated. This type of data entry is laborious,

and therefore costly. It is also error prone; thus the derived data is more reliable. When

another process in the GPC needs information about an I/O network, it will obtain this

information from the I/O Local Database. Unlike data retrieval from mass storage, these

memory accesses will be very fast.

2.3.3 I/O Network Status

I/O Network Status serves as a repository of information about the state of every network

in the system. The state of a network is comprised, in part, of the most current information

about the condition of its hardware as well as other facts which can be deduced from the

state of its hardware. Purthermore, since the network is a shared physical resource under

software control, the state is also comprised of information about which process has access

to the network at any given time, which IOS is active and which DIUs are reachable. Two

processes share responsibility for determining network status: the I/O Network Manager

and the I/O Communication Manager. Other processes which may be consumers of this

information include the Resource Allocator, the GPC Status Reporter, the System

Manager, and the I/O Network Status Monitor.

The hardware components in the network which are viewed as part of the AIPS system are

the nodes, the ports of the node, and the IOSs. (A link is defined as two ports on adjacent

nodes and the cable between them). While DIUs are physically part of the network, they

arenot considered part of the underlying system but rather part of the application process.

In general, I/O System Services would not have enough information to determine whether

or not a given sensor, actuator, or other DIU component was functioning properly. What

I/O System Services can determine is whether or not it is possible to carry on error free

communications with a given DIU, where errors are defined as any violations of the strict

protocol which governs such communications. The state of the nodes and the IOSs is

determined solely by the Network Ma, aser. The hardware status is the Network

Manager's view of the network hardware made available to any other process in the

system. Of course, the actual physical state of the hardware may change many times during

network growth and reconfiguration. However, these transitionary periods are of short

duration. Therefore, the values stored by this process are stable values representing the

22

view of the Network Manager after any necessary changes in configuration have been

made. The state of DIUs, the rootlink currently in use, and who controls access to network

resources is determined jointly by the I/O Communication Manager and the I/O Network

Manager.

2.3.4 I/O Network Logs

While I/O Network Status records information for use by other software processes in the

system, there is a clear need for information about the status and history of network

hardware to made available to a human operator. Such information can be useful for online

system maintenance. It may also be an important input into mission critical decisions which

are under operator control. This process is responsible for keeping a log relating to the

history of network hardware for each network in the system. The Network Manager and

the I/O Communication Manager both make log entries. An operator is able to display
those entries on a terminal.

2.3.5 I/O Network Status Monitor

Since it is helpful for the I/O network status to be easily visible to an operator, a network

status display is provided for each I/O network in the AIPS system. This status of the

AIPS I/O networks may be displayed on a VT100 terminal or a VT240 color terminal,

depending on availability.

The display is derived from the Network Manager's view of the status of the network

hardware. The display proces s periodically queries the I/O Network Status process about

changes in the status of the network. If changes have occurred since the last time the

display process obtained status information, it updates the display accordingly. The display

is not completely redrawn each time network status changes which produces a significant

gain in the response time of the display.

2.4 Algorithmic Considerations

2.4.1 Network Growth

Network growth is the process whereby the links between the nodes in the network are

enabled to form a virtual bus which supports communication among network subscribers

(GPCs and DIUs). Data flow in the network is controlled by the configuration of the ports

in each node. For a link to carry data between two nodes, the ports at either end of the link

must both be enabled. Nodes retransmit messages received by an enabled port from its

other enabled ports, but not from the port which received the message. (The purpose of the

retransmission is to maintain the integrity of the waveform and only imposes a delay of one

half the transmission clock period.) When a node receives a message addressed to itself on

any port, disabled or enabled, it carries out the command encoded in the message and then

23

transmitsits status from all ks enabled ports, including the port which received the message

if that port is enabled. A node obeys reconfiguration commands sent by the Network

Manager by enabling or disabling its ports in accordance with the value of the port enable

field in the command. Once the new configuration is in effect, the node returns a status

message. There are no restrictions in the overall network topology. However, for proper

operation, there can be no loops in the active network. The nodal ports which are enabled

may not establish a ring. A data bit travels through each enabled link exactly once. Once it

is grown, a network operates like a time division multiplex bus.

Nodes are added one by one to the virtual bus. To determine which node to add next, the

Network Manager refers to the Network Topology, a database which describes all the

physical interconnections which exist in the network on a node by node basis. The

algorithm used to add these nodes causes the bus to expand in a treelike manner. Because

of its resemblance to a tree, the nodes which are included as part of the virtual bus are said

to be part of the active tree. The growth algorithm generates a maximally branching,

minimum length path to every node in the network. This configuration is later changed in

order to cycle spare links and to repair faults. In addition to joining network nodes into a

virtual bus, the growth process is also concerned with enabling communication paths to

network subscribers: DIUs and remote GPCs. This is accomplished by enabling nodal

ports adjacent to these devices and determining whether or not these components obey the

protocols established for all functioning network components. The detection of protocol

violations results in the connection to the subscriber being disabled. In fact, the detection of

a protocol violation when any new link is called into service results in the disabling'of that

link. Furthermore, the growth algorithm employs a set of diagnostic tests which exercise

every link in the network, including spare links. The tests can also detect the presence of

some malicious failure modes such as nodes which transmit on disabled ports and nodes

which respond to commands addressed to other nodes.

The network growth algorithm assumes that, although hardware faults may be present in

the network before the growth process commences, no additional faults will occur while

growth is taking place. However, if errors are detected during growth which indicate an

additional failure, then the growth process begins again from the top. Failure modes which

produce this condition are the failure of the active root link, or the presence of a babbler. If

a fault occurs repeatedly after a network is partially grown, an intermittent failure can be

inferred. Strategies to deal with short lived, intermittent failures need to be developed.

However, this is beyond the scope of this functional design.

Network growth begins by establishing an _?*ive root link to one of the root nodes and

ensuring that this root node has a port which t.:,., be used as the springboard to the rest of

the nodes in the network. If an active root link is found, the remaining nodes are added to

the active tree. Any nodes which are not connected to the active tree after this stage is

complete are unreachable. At this point in the growth process only one root link to the

24

networkhasbeenenabled. After the nodal network is established through the active root

link, the spare root links to the network must be enabled and tested. In order to establish

Repeat until growth is successful or two attempts fail to produce a stable network:

Establish a working connection to a root node

If an active root link is established then

Add remaining nodes to the network

Mark idle nodes failed

Add spare root links

Add DIUs

Add Remote GPCs

Collect Node Status from all nodes in network as def'med by topology

Validate Network Status

If no discrepancies in Network Status then

network is grown successfully

deselect transactions of failed nodes from the status collection chain

Figure 11. The Network Growth Algorithm

spare root links, the inboard port of each active root node is enabled. Next the network

subscribers, that is the DIUs and remote GPCs of a regional network, are connected to the

network. Finally, status is collected from all nodes in the network to verify that no failures

have occurred in the network during the growth process. If no discrepancies are found, the

node status chain is updated by removing transactions to nodes which have been identified

as failed. Figure 11 summarizes the major steps in the network growth algorithm. The

following discussion examines the logic employed in each major step in more detail.

For growth of a network to be considered successful, an active root link must connect the

GPC to the network. This implies the existence of a properly functioning IOS and, except

in the trivial case of a one node network, a root node which is able to communicate not only

with the IOS but also with at least one adjacent node. Establishing the connection is a two

step procedure. In the first step, the hardware is put in a state which supports

communication between the GPC and the root node. In the second step, the correct

operation of this hardware is verified. In an optional third step, a set of diagnostic tests is
performed.

Since a GPC generally has more than one root link to a network, the approach taken is to

order the root links in some way and then to try them in turn until a properly functioning

co_,n-ction is found. The ordering of the root links is based on their previous operating

history. The fewer the errors associated with a particular root link, the higher its priority in

the ordering. The root link with the best record is tried first. If the first attempt to connect a

particular root node is not successful, the process is repeated a second time. The second try
is used as a filter for transient faults.

25

Thefu'ststepin settinguparoot link is to configuretheroot nodesothattheportadjacent
to the IOSis enabledandall its otherportsaredisabled.The secondstepis to verify that
thehardwareinvolved in theroot link is operatingproperlyandthat thisroot nodecanbe
usedasaspringboardto therestof thenetwork.Theabsenceof communicationor protocol
errorsin thechainwhich sendstheconfigurationcommandandreceivesthenode'sreply is
evidenceof aproperlyfunctioningcommunicationlink betweentheIOSandtheroot node.
An optionalsetof diagnostictestsmaybeconductedatthispoint.Thesearedescribedlater
in moredetail.If theroot nodepassesall thediagnostictestsor if thetestsarebypassed,a
determinationis madeabouttheability of theroot nodeto functionasajumping off point
for the additionof theremainingnodesin thenetwork. If diagnostictestsareperformed,
this determinationis madeby identifying a non-failed port on the root nodewhich is
adjacent to another node. However, when diagnostic testing is bypassed, this is
accomplishedby findingalink to anadjacentnodewhichcanbeenabledwithouterrors.

Thealgorithmfor addingnodesto thenetworkis designedto conductanexhaustive search

for a properly functioning connection to every node in the network. The failure of a single

port of a node does not cause the entire node to be considered failed. However, some

nodes may not be reachable by any path; the identity of these unreachable nodes is apparent

only after this phase of the growth process is complete.

This stage of network growth begins after a root link has been established. The root node

becomes the first entry in the spawning queue, a data structure used to control the growth

of the network. An entry in the queue consists simply of a node which has been

successfully added to the network but from which growth has not yet taken place. Two

positions are marked in the queue: the top and the next entry. The top holds the node in the

queue from which growth is currently taking place. This node is called the spawning node.

The next entry is the next empty position in the queue. As nodes are added to the network,

they are placed on the spawning queue at the next entry point and the next entry point is

advanced to point to an empty position in the queue. As growth of the network proceeds,

the topmost node in the spawning queue is removed from the queue and used as the

jumping off point, or spawning node, for further growth. The root node becomes the first

spawning node. Each node in the spawning queue is processed in turn until the queue is

empty.

The processing of the spawning node proceeds on a port by port basis. The action taken

depends on the kind of element found adjacent to each port. If the adjacent element is a

remote GPC or a DIU, the spawning node and the port of the spawning node facing that

element is recorded for future reference. These ports will be enabled after the network

nodal growth is complete. However, if the adjacent element is a node whose status is idle,

i.e. not yet part of the active tree, an attempt is made to enable the link to that node, referred

to as the target node. If the attempt to enable the link between these nodes is not successful,

the link is disconnected. If the attempt is successful, an optional set of diagnostic tests may

26

beperformedon the newly added node. If the tests are not performed, the target node is

placed at the end of the spawning queue; otherwise, the target node is placed on the

spawning queue only after it passes the diagnostic tests. When all the ports of the spawning

node have been processed in this way, the next node in the spawning queue becomes the

spawning node.

Figure 12 shows the entries made to the spawning queue for the growth of a fault free, six

node network. Node 1, the root node, is the first entry. The three nodes adjacent to Node 1

are each added in turn to the network. As each node passes the set of diagnostic tests

described below, it is added to the spawning queue. When all the nodes adjacent to Node 1

have been added to the network, Node 2 becomes the spawning node. Node 2 has one

active link, an idle link adjacent to Node 3 and an idle link adjacent to Node 4. Since Node

3 is already active, the only node to be added to the network from Node 2 is Node 4. The

next spawning node is Node 6. Node 5, the only idle node adjacent to Node 6, is the last

node added to the network. Nodes 3, 4 and 5 each become a spawning node. However,

since none of these nodes is adjacent to an idle node, no further nodes are added to the

network or to the spawning queue which is now empty.

Spawning Queue

1 ._l-- Top

2

6

..2_
4

T
m

!'_-- Next

I GPCI

Figure 12. No Fault Growth Algorith m

The growth algorithm also detects and isolates babbling network components, thus making

it a useful backup tool for network maintenance. When a port of a spawning node adjacent

to a babbling port on the target node is enabled, the babbler is detected because its babbling

transmissions interfere with the status report the spawning node sends following its

recortfiguration. Following the detection of the babbler, the spawning node is sent another

command instructing it to disable the port adjacent to the babbler, thus isolating the babbler

from tJ_e 1*.st of the properly functioning network. The method works because the network

links are full duplex in the sense that separate physical data links exist for the transmission

and reception of data. The reconfiguration command reaches the spawning node through a

path not corrupted by the babbler. If the spawning node itself is babbling from the

27

spawningport, thetargetnodewill not respondto thecorruptedmessage.Thus thetarget
nodewill notbeconnectedto thebabbler.

Theuseof thegrowth algorithm to isolateanodewhich is babbling from all its ports is

illustrated in Figure 13. Node 2 is shaded to denote it as the babbler. When Node 1 is the

spawning node, the attempt to connect Node 2 fails because the babbler causes violations

of the established communication protocols. Hence, Node 2 is not added to the spawning

queue. Nevertheless, Nodes 6 and 3 are added as before. Node 6 is the second spawning

node from which Nodes 4 and 5 are added to the active tree. When Node 3 becomes the

spawning node, a second attempt is made to reach Node 2. (A node may be babbling from

one port only.) When this attempt fails, Node 4 becomes the spawning node. Since Node 2

is still not in the active tree, a third and f'mal attempt to reach Node 2 is made from Node 4.

Although Node 2 is babbling, the ports facing it on Nodes 1, 3, and 4 are disabled and

therefore its faulty transmissions cannot disturb other network communication.

Spawning Queue

1

6

3
4

5

Top

_-. Next

I GPC I

Figure 13. Network Growth Used To Isolate A Babbling Node

As each node is added to the network, a series of fault detection diagnostic tests may be

performed. The tests are sequential in nature, and if any test fails, the remaining tests in the

sequence are not performed. The first three tests are conducted on each port of the newly

added node which is adjacent to an idle port of an idle node. This test sequence causes

every network link to be exercised during the growth process.

The first test determines if the link between two nodes can be activated. It is performed by

enabling the link between the newly added node and an adjacent node. If the attempt to

enable the link is successful, the link is left in the enabled state so that the next test can be

executed. If the link is not enabled, the ports on either end of the link are failed.

The second test determines whether or not the adjacent node transmits on a port after that it

has been disabled. In this test, a configuration command is sent to the adjacent node over

the newly enabled link instructing that node to disable all its ports. The node protocol is

28

suchthat it carriesout this commandbeforetransmittingareply. A properly functioning
nodetransmitsa reply from all enabledportsto everycommandit receives.Sincenoports
areenabled,this messageshouldnot be transmitted.Thus, thenodepassesthis testif no
reply to the commandis received. A node from which a reply is received is considered

failed and has its status marked accordingly. When starting the third test, the adjacent node

has all its ports disabled.

The third test determines whether or not the newly added node itself retransmits a message

from a disabled port. This test requires three transactions to be transmitted on the network.

The first transaction is sent to the newly added node commanding it to disable all of its

ports except the inboard port connecting it to the established network. The second

transaction is sent to the adjacent node commanding it to enable the port facing the newly

added node for one transmission only. The third transaction is sent to the newly added

node asking for its status. If the newly added node is functioning properly, it will not

retransmit any messages, including the command making up the second transaction, to the

adjacent node. On the other hand, if it has failed such that it does retransmit a message

from a disabled port, the adjacent node will send a reply which may or may not be

transmitted by the node under test back to the IOS. In either case, the transmission of this

message causes the valid message detector for the port facing the adjacent node to record

the transmission and to return this information as part of its status message. The newly

added node passes this third test if no message from the adjacent node is received and the

status indicator for the port in question shows no valid message received on that port.

However, if it fails the test, the status of the node is marked failed. When the above three

tests have been performed for every idle port of the newly added node, the newly added

node remains configured such that only its inboard port is enabled. It is then ready for the
last test.

If the preceding tests are completed without error, the last test is performed. This final test

determines if the newly added node responds to commands sent to other nodes in the

network. In this test, each node in the network is commanded to report its status, whether

or not it is in the active tree. If an unconnected node responds to this command, it implies

that the most recently connected node is responding to this address. Because of this

protocol violation, this node must be disconnected from the active tree. Furthermore, its

status is marked failed, since the address decoding function of a node is a central function,

independent of the port receiving the address. A previously connected node could also

respond with errors. This means that either this node has recently failed or the most

recently added node is talking out of turn. This last added node is then removed from the

network as described above. The node or nodes which had errors on the previous test are

again queried for status. If the error indicators are gone, it confirms the talker out of turn

hypothesis, and the status of the removed node is set to failed. If not, it indicates that a

failure has occurred during the growth process. In the former case, the growth process is

continued. In the latter case, the growth process must begin again from the start.

29

After everynon-failednodein thenetworkhasbeenconnectedto theactive tree,attempts
aremadetoestablishspareroot links. This is accomplishedby enablingtheinboardfacing
port of everyroot nodewhosestatusis activebutwhich is not connectedto theactiveIOS
or to afailedIOS. Up to two triesaremadeto obtainanerror freeresponsefrom theroot
nodein thisconfiguration.Eachnewlyenabledroot link is testedby collectingstatususing
thatinterface.Theresultsof theattemptto setup this connectionareusedto updatethe
statusof theinterface. Successfullyenabledroot links havetheir statussetto available;
demeritsarescoredagainstanoffendingroot link.

If anyDIUs arepresenton thenetwork,portsadjacentto them areenablednext. These
componentsarecheckedfor protocolsestablishedfor all functioningnetworkcomponents.
If aprotocolviolation is detected,theconnectionto thesubscriberis disabled.

For regionalnetworks,theportsadjacentto remoteGPCsareenabledlast. Sincea GPC
which is facingaport which is not enabledwill notdetectanynetwork activity, it maybe
attemptingto usethe networkat the time theport is enabled. This could result in errors
beingdetectedin thenode'sreply to its configurationcommand. Thuserrorsin the node
statuswhich is returnedafterenablingtheroot nodeport of a GPCareignored. To verify
that theGPCis in factnot babbling,however,theManagerasksfor statusfrom that node
in a chain executedwith contention. If errors aredetectedby this chain, that port is
disabled.

After theinitial growthof thenetworkis completed,thestatuscollectionchain is executed
from the activeroot link. This is analyzedby looking for anydiscrepanciesbetweenthe
statusof thenodesin thenetwork asdeterminedby theprocessandthereal time statusof
thosenodes.This is to confirmor disprovetheassumptionthatfailuresdid not occurin the
networkduringgrowth. If thereal timedataindicatesthepresenceof a babbler,a failed
IOS,or failednodeswhich thegrowthprocessreportedasactive,thenadiscrepancyexists
betweenthereal stateof thenetworkandits stateasdeterminedduringnetworkgrowth. It
cannotbedeterminedwhetherthesefailures occurredafter growth of the network was
completedor during the growth of the network. Nodeswhich fail during the growth
processbutafter theyhavebeenaddedto theactivetreedonot haveafailure attributedto
thembut maycauseothernodesto appearfailed. Thus, thenetwork is regrown. If the
secondtry is unsuccessful,an intermittent failure exists on the network. The present
algorithmdoesnothandleintermittentfaults.Hence,thenetworkis declaredto be inactive
andtheNetworkManageris stopped.It mayberestartedafterthecauseof theproblemhas
beeninvestigated.

The final stepin network growth is to deselecttransactionsfrom the statuschainwhich
would query failed nodesfor status. Thesenodesare isolated from the network and
thereforecannotcorrectlyreturna statusmessageevenwhenthenodeis repaired. Errors
detected by the status chain also trigger network reconfiguration. Therefore, the
transactionsaredeselected.If thenodeisrepaired,theoperatorcancommandtheNetwork

30

Manager to reconnect the node to the network. At that time, the status transaction is
reselected.

2.4.2 Fault Analysis

The purpose of this process is to analyze the data provided by the IOS after executing the

status collection chain in order to identify both the type of fault responsible for the errors

and the faulty network element itself. Four analyses are performed: raw data analysis,

transient analysis, node data analysis, and error analysis. Each is described in this section.

While carrying out its principal function of sending and receiving data, the lOS detects

• various error conditions on the network. The IOS imparts this information to the processor

through several status registers and through a buffer of status information appended to the

incoming data of every input transaction. Further status information is obtained by

programming the IOS to copy the values of status registers to memory locations in the

DPM as the chain progresses. This information is referred to as raw data. The IOS

Specification in Appendix C provides details about the error detection capabilities of the

IOS. By analyzing this information certain failure modes are identified. These failure

modes are: an interface failure due to a failed FTP channel or failed IOS hardware, the

presence of a babbler on the network, and the failure of individual nodes to correctly follow

the communication protocol. The order in which this status information is processed is

important since the presence of a failed FTP channel connected to the active root link, a

babbler, or a failed IOS precludes the analysis of other error indicators.

Raw data analysis begins by verifying that the channel connected to the IOS conducting this

chain has not failed during chain execution. There are two parts to this diagnostic

procedure: a data exchange pattern test and a call to GPC FDIR. Since GPC FDIR is a

periodic process, a small amount of time may elapse between the failure of a channel and its

detection by FDIR. The data exchange pattern test is used to detect a failed channel which

GPC FDIR has not yet uncovered. If the channel with the active root link has failed, non-

failed channels will obtain invalid data from its IOS/DPM. This data should not be

processed since it could result in erroneous conclusions about the network. Similarly, if the

channel failed after the last check with GPC FDIR (before the chain data was loaded into

the DPM) but the failed channel has been resynchronized by GPC FDIR, then the data

exchange pattern test will show no errors but again the chain data should not be processed

since it may be invalid. To prevent this situation from occurring, GPC FDIR does not

report the status of a channel as okay until it has undergone a trial period in a

resynchronized state. This period is much longer than the longest chain delay. This means

that errors resulting from a channel which failed before voted data was written to the DPM

and which is now functionally resynchronized are still correctly attributed to the failed

channel. The way in which checks are performed on the status of the channel which

interfaces to the active IOS creates a window of time during which it is possible to

determine whether or not the channel has failed.

31

If nochannelfailuresaredetected,raw dataanalysisproceedswith thestatusinformation
provided by the IOS. If the value of the Chain StatusRegister (CSR) indicatesthat the
chaindid notcomplete,acommandis written to theInterfaceCommandRegister(ICR) to
stoptheIOS. TheIOScanbeprogrammedto automaticallytimeout individualtransactions
but it doesnotprovideanoverall time out for anentirechain. This time out condition is
detectedwhenthea chaindoesnot completein its allottedmaximum executiontime. A
check is thenmadeof other error indicators to determineif an incoming babbler was
detectedor if theIOS hasfailed. The indicatorsthat areexaminedaretheInterfaceStatus
Register(ISR)which detectsastuckonhigh conditionin thenetwork,thecontentionstate
of the IOSandthepossessiondefaultindicator in theCSR,theextent to which the chain
did completeasindicatedby thevalueof thesolicitedchainpointer,theextentto which the
IOS correctlyperformedits byte countZeroingfunction whenexecutingareceive input
instruction,andtheability of theDPM to passaread/writepatterntest.

If a chaindoescomplete,thestatusindicatorsin theCSRarecleared.Thusthe analysisto
determinewhetheror notababblerispresentin thenetworkisperformedon thefinal value
of the CSRwhich is savedby theendof chainprogramprior to commandingtheICR to
switch modes(the definition of chain completion is a switch from the solicited to the
unsolicitedmodeof operation).Thefinal valueof theCSRis examinedfor anindicationof
datatransmissionon thenetworkwhile anoutputinstructionis beingexecutedby this IOS,
for indicationsthatdatawastransmittedon thenetworkduringthepolling sequenceor that
a polling sequencewasdetectedduring data transmissionby this IOS. The ISR is also
examinedfor thepresenceof a stuckonhigh condition.Any of theseprotocolviolations
areevidenceof a babbleron thenetwork.If anyof theseerrorsaredetected,aread/write
patterntestis performedon the DPM to ensurethattheerroris dueto ababblerandnot a
failedDPM.

Finally, thestatusinformationfrom eachnodetransactionis examinedfor error information
asfollows. TheI-IDLCstatus,which is savedafterthetransmissionof thecommandto the
node, indicates whether or not any framing or overrun errors occurred during this
transmission.If thiserror is detected,theIOS is consideredfailed. If thebytecount kept
by theIOSon thedatareturnedby thenodestill hasits initial (non-zero)value,theIOS is
consideredfailed. This valueshouldrangefrom zeroto fifteen. Fifteenis thecorrectbyte
count,zeroindicatesno responseisreceivedfrom thisnodeandanyvaluein betweenis an
incompletetransmissionfrom thenode.The IOS whenoperatingcorrectly will zerothis
bytecountandthenstartto incrementit asdataisreceivedfrom thenode.When theinitial
valuehasnot beenwritten over by the IOS, it is assumedthat the IOS is not eperating
correctly.

In the caseswhere theerror is attributedto a failed IOS, no further errorprocessingis
performed. However, someerrors are attributed not to the IOS but instead to the
transactionitself, i.e. thenode,whosestatusis beinganalyzed.Thus,if the bytecounthas

32

any other value except the correct byte count of fifteen, the error is attributed to the
transaction itself and not to the IOS. In particular, if the byte count is zero, then no
responsewasreceivedfrom thisnode.Thestatusof eachtransactionis thenexaminedfor
thepresenceof HDLC protocolerrors,thetransmissionby thenodeof anincorrectnumber
of residualbits and an invalid sumcheckappendedto themessage.Shouldanyof these
errorsbe detected,a read/writepatterntest is performedon the DPM to be surethat the-
error is not attributableto a failedDPM memory.Whenatransactionhasnoerrorsscored
againstit, the dataassociatedwith that transactionis returnedto theNetwork Manager.
However, if the transactionhaserrorsscoredagainstit, no datafrom that transactionis
returned.Whenall thetransactionshavebeensubjectedto this erroranalysis,therawdata
analysisis complete.

Transient analysis provides a coarse filter between transient and permanent faults in the

network. Automatic retries of those chains which produce error symptoms weed out

transients. However, distinguishing between a true transient fault which occurs one time

but is not reproducible and an intermittent or recurring fault is a very difficult task which is

not pursued in the present design. The retry filter reduces the likelihood of a transient fault

being diagnosed as a permanent fault. To deal with intermittent faults a system of demerits

could be employed. If a fault is detected, but does not reappear in the retry, a demerit could

be charged to the hardware causing the error if that can be determined or to the entire

network if a more specific cause cannot be found. As spare link cycling proceeds, active

links are retired temporarily from service. Over time the demerits will accumulate against a

link (or set of links) experiencing intermittent faults. These links can be kept out of service

for longer periods of time if their presence results in errors being detected. The demerit

scheme has been implemented for root link errors. In the present design this information is

used to prioritize root links for use in network regrowth and reconfiguration operations.

Another area requiring further examination is the amount of time to wait between retries.

The present model assumes faults occur more or less instantaneously. However, this

model may not be accurate for faults due to damage events.

Data analysis is the process whereby the node status information is examined to detect

faults in the network. A complete description of the data returned by a node is contained in

Appendix D, the Node Specification. In particular, this analysis identifies a node which is

transmitting from a port which should be disabled. This fault may or may not produce

other error symptoms. Since valid data from the nodes is not included in the report if an

interface failure or a babbler is present, data analysis only proceeds when these failure

modes are not detected. Similarly, data is not included from nodes which have errors

attributed to them during the execution of the status collection chain. However, since the

failure mode detected by data analysx_ e.rm produce error symptoms, data from error free

node responses is analyzed even when other node responses do have errors. The reception

of a valid message is recorded by an adjacent node even though it is configured to be

disabled. (Adjacent ports are always in the same configuration, either both enabled or both

disabled. They also have the same status, either both active, both idle or both failed.)

33

Thus, if a non-failed,disabledport reports the receptionof a valid message,the node
adjacentto that port is transmittingfrom a disabledport. Of course,severalnodesmay
detectthis fault if thenodeis transmittingfrom more thanonedisabledport but thefault is
attributedto the nodetransmittingon the disabledport not the nodereceiving thefaulty
transmission.However, if more thanonenodeis found to havethis fault, the analysisis
not successful.

As its nameimplies, error analysisis the processof deducingwhich network element
producedthesetof errorsattributedto networknodes.Of coursenot all setsof errorsare
amenabletoanalysis.Theinput spaceof thissubprogramhasmanycombinationswhich do
not pinpoint a specific networkcomponentasbeing faulty. Furthermore,the assumption
underlyingall thedeductivereasoningin theerroranalysis,is thatonly onecomponenthas
failed and thisfailuregivesriseto all theerrorsymptoms.

If all thenodesin thenetworkhaveerrors, erroranalysisattributestheerrorsto aroot link
failure. If somenodeshaveerrorsandsomenodesdonot, two possiblefailure modesare
considered:a failed link (or node)throughwhich no transmissiontakesplaceor a single
nodefailure. The singlenodefailure symptomcould be indicative of anodewhich does
notrespondto commandsbut whichcontinuesto retransmitmessagesasit did beforethe
failure. It couldalsobeanodewhich itself is not failedbut to whoseaddressanothernode
in thenetworkresponds.Thesinglenodefailure is easyto diagnosesinceexactlyonenode
in thestatuscollectionchainshowsanerror.

If more thanone node haserrorsbut fewer than all nodeshave errors, the remaining
problem is to determine if the cause of those errors is a link or node whose
transmission/retransmissionfunctionis no longeroperational.Thebasicideais thatwhen
a link or anodefails in this way, thenall nodesdownlineof this fault alsohaveerrors.
Thesignatureof suchafailure is thatnodesinvolved form atreelikepatternin thenetwork.
It shouldbenoted that anotherfailure modewhich would producea similar patternof
errors is anode which babbleson all its outboundports. To determineif the observed
errorsfit thepatternfor afailed link, nodeor outboundbabbleris athreestepprocess.The
first stepis to identify anodewhichqualifiesastherootof thefailedtree. Suchanodeis a
node which had errors itself but which has an inboard port (a port which receives
commandssentby the IOS) adjacent to a non-failed node. To prove this hypothesis,
exactlyonenodeshouldhavethischaracteristic.If morethanonesuchnodeexist,thefault
is consideredundiagnosable.However, if a root is found, the next step is to determine
whether or not all nodesdownline of the root had errors attributed to them. This is
accomplishedby a recursivealgorithm. The algorithmprocessesinformation about the
current node.The first v,,lo,,of the currentnodeis the root of the failed tree asalready
determined.Thenodesadjacentto theoutboardportsof (i.e. downlineof) thecurrentnode
areexamined.If sucha nodedoesnot haveerrorsattributedto it, thedesiredpatternis not
presentandthefault is consideredundiagnosable.However,whenthe nodesdownlineof
thecurrentnodedo haveerrors,therecursioncontinuesuntil everynodedownlineof the

34

root of the treehasbeenvisited. If a treelikepatternis established,the last part of the

pattern checking process can proceed. This step verifies that all the nodes which had errors

appeared in the failed tree, i.e. no nodes with errors lie outside the tree. If nodes with

errors are found outside the tree, the fault is considered undiagnosable. The final

determination of whether or not the fault is due to a failed link, a failed node, or an

outbound babbler is made during network reconfiguration.

Figure 14 shows a network which has a broken link. In this situation, the status collection

chain would report no responses from the shaded nodes in the figure. Since Node 2 is the

only node with an inboard port facing a non-failed node, it is identified as the root of the

failed tree. Furthermore, all nodes downline of Node 2 are failed and no nodes outside the

tree had errors. Thus, error analysis identifies this fault as a failed link between Node 1

and Node 2 or a failure of Node 2. The final identification of the fault takes place during

network reconfiguration.

[I

®

®

Figure 14. Identifying A Failed Link

2.4.3 Reconfiguration

The purpose of this process is to reconfigure the network so as to restore error free

communication to all reachable, non-failed nodes in the network. The reconfiguration

action depends on the type of failure determined by the fault analysis process. The fault

identified in this report is actually a hypothesis about what is causing the errors on the

network. The reconfiguration process, in effect, tests this hypothesis and then verifies that

the network is again fully operational. Therefore, the network may go through several

intermediate configurations before the reconfiguration process is complete.

The network fault analysis process identifies six classes of faults: a root link failure, a

babbler, a link or node failure, a node which transmits from a disabled port, a single node

failure, and an undiagnosable failure. A separate strategy exists to deal with each of these

fault classes.

35

Thereconfigurationprocessisconsideredcompletewhenthenodestatuschainis executed
on the reconfigurednetwork and doesnot detectany errors.The backup strategemfor
dealingwith errorphenomenawhichoccurduringareconfigurationattemptbut which are
not anticipatedis networkregrowth.This is also thestrategywhenthe fault analysishas
not beenableto diagnosethe failure mode.In bothcasesthenetwork is regrownwithout
the fast grow option (i.e. growth without diagnostic testing) since the diagnostic tests
uncover failure modeswhich may produceunanalyzableerror patterns,suchas nodes
which respondto the addressesof othernodesandnodeswhich respondlate anddouble
fault occurrences.

In general,reconfigurationstrategiesaredesignedto dealwith both active andpassive
faults in thehardware.PassivefaultsareCharacterizedby thenon-retransmissionof data,
i.e. abarrieror obstacleto dataflow in thenetwork.A disconnected cable is an example of

such a fault; data cannot be retransmitted over this cable but transmission between other

connections in the network is not affected. Active faults are characterized by the disruption

of data flow in the network beyond the boundaries of the failed component itself. An IOS

with a transmitter stuck on high is an example of this type of fault; the stuck on condition is

retransmitted throughout the network, masking or disrupting transmissions between

network connections remote from the failed part. Since different faults can produce

identical error symptoms, e.g. a broken root link and an IOS transmitter stuck on high

result in zero byte counts for all node responses, the reconfiguration algorithm must

identify the specific cause of the problem so as to effect a repair. In this example, the

passive fault (broken root link) only requires the selection of another root link. In the case

of an active fault (the IOS stuck on high), the faulty component must also be isolated.

When the fault hypothesis is a failed root link, the hardware comprising the root link comes

under scrutiny. This includes the IOS, the root node and the connecting cable. The

interface status of the channel connected to the failed root link is updated to reflect the cause

of the failure, a failed IOS or a failed channel. A spare root link, i.e. one that is connected

to an operating FTP channel and IOS, is then chosen to establish a new FTP connection to

the network. If no spare root links are found but at least one root link is connected to a

failed FTP channel, this process suspends itself waiting for the outcome of GPC FDIR

attempts to bring the failed channel back online. As a last resort, if no channels are brought

back after a reasonable delay, an attempt is made to regrow the network. This causes failed

root links to be tried one more time. However, in the case where spare root links are

available, each is tried in turn until a non-failed root link is found or until another type of

fault is diagnosed. The new interface is then used to execute the node status collection

chain. Next, the node confis:,i-.tion table is updated to reflect the new root link; some

outboard ports will become inboard and vice versa. Using this new configuration, an error

analysis of the results of the node status chain is performed. If the analysis is

unsuccessful, indicating the presence of an undiagnosable failure mode, the network is

regrown. If no errors are detected, as would be expected in the case of a passive failure

36

involving only the IOS, the inboard port of the root node, and the cable between them, the

reconfiguration process is complete and the status of the new root link is marked active. If

another root link failure occurs, the status of this root link is marked failed and the next

available root link is tried. Finally, if either a babbler, or a link or node failure is detected,

the root link switch is considered successful but the reconfiguration process is not yet

complete. In this case, the reconfiguration process starts over again from the beginning,

with a new root link but this time dealing with a new fault. This behavior would be

expected for an active fault such as a babbling IOS or a passively failed root node which

now must be removed from the network so that service to nodes downline of it can be

restored.

When a babbler is detected in the network, the network is regrown using the fast grow

option. A babbler is an active fault- and includes a stuck on high condition detected by the

IOS at its receiving interface to the network. (The IOS cannot observe a stuck on high

condition on its transmitting interface.) For a network of N nodes which has a babbler, the

cost of regrowing the network is N + P chains, where P is the number of spare ports on

the babbling node which must be tried until a non-faulty one is found. Strategies to reduce

this cost are possible in networks which are either maximally branching or fully linear. In

the latter case a binary search could be used. The node in the middle of the bus would have

its outboard port disabled and the location of the babbler deduced from the continued

presence or the absence of babbler symptoms on the network after the reconfiguration. For

the maximally branching network, a similar search could be conducted on each outboard

branch of a node. If disabling the port which leads to a branch eliminates the babbler's

symptoms, then the port is the gateway to the branch of the network containing the babbler.

However, the network configuration may be a mix of these twobasic patterns. The cost of

fnding the babbler is then not only a function of the number of chains necessary to

identify and isolate the babbler, but also the cost of deciding which type of search to

employ. In either case, once the babbler is identified by the search process, it must be

isolated from the other nodes in the network. The decision as to which algorithm is least

expensive depends to a large degree on the number of nodes in the network. More analysis

of the problem is needed to make an informed choice as to which strategy should be used

for a given network. The present design uses regrowth to reconfigure the network in

which a babbler is present.

A failed node generates the same error pattern as a failed link. Thus, when the fault analysis

reveals the presence of this failure mode, the reconfiguration algorithm must determine

which fault has actually occurred and reconfigure the network accordingly. It is first

assumed that a link has failed. The failed link is disconnected and an attempt to reach the

failed node, i.e. the node immediately downline from the link, is made by using any spare

ports on that node which are adjacent to nodes not in the failed node list. When this

strategy fails to restore communication with the failed node (possibly because no spare

ports are available), data is assembled which will allow each branch of the failed tree to be

reconnected to the active network. This data consists of a list of nodes for each branch of

37

thefailed node,i.e. a separatelist for eachsetof nodeswhich lie downlineof eachof its
outboardports.Only one successfulconnectionto any spareport on abranchneedsto be
madein ordertorestorecommunicationto theentirebranch(andpossiblyto thefailednode
and all othernodesin the failed tree). A threetransactionchain is usedto reconnectthe
branchto thenetwork. Thefirst two transactionsenabletheportsoneithersideof thenew
link while thethird transactiondisablestheformer inboardport of thefailed nodein case
the nodeadjacentto thatinboardport is ababbler. If thefailed nodecorrectly returnsits
status,therepair is completeandtheabsenceof errorsis verified by collecting statusfrom
everynodein thenetwork. If thefailednodeis still not reachable,theportconnectingthis
nodeto thepresentbranchisdisconnectedandtheproperfunctioningof thenewly enabled
link is verified.Thenall thenodeson thisbranchareremovedfrom thefailed nodeset.The
net effect of this processis to restorecommunicationwith all reachablenodesin the
network while isolatingthefailed node.As communicationto eachbranchis restored,the
possiblepoolof sparelinks increases.Thusif anybranchwasnotconnectedbecauseof a
lack of sparelinks, this branchis retried whenevera connectionto anotherbranch is
successful.Any nodeswhich arestill unreachableat the end of this processaremarked
failed.

If a noderetransmitsvalid data from a port which should be disabled, the node must be

removed from the network. This failure mode is distinguished from a babbler which is

always transmitting a random bit stream or is stuck on high. When a babbling port is

identified, the adjacent port of the neighboring node is disabled. This neighboring node

will not retransmit from its other enabled ports anything received by the disabled port.

Furthermore, the node will ignore any random bit patterns it receives. However, if the

neighboring node receives a request for status addressed to itself on a disabled port, it will

transmit its status from all its enabled ports, even though it does not retransmit the initial

request. If this failed node is not removed, each time the manager asks for status from the

node adjacent to this port, it would receive two valid commands to report its status. Only

one response is expected. Once the first response is received, another node will be

commanded to report its status. The second response of the node may interfere with the

reply of a node whose transaction is later in the chain, making it appear that this next node

has failed to respond correctly to a command. Once the failed node has been removed from

the network, status is collected from the remaining nodes to verify that in fact the fault has

been identified and isolated. If errors are still detected in the network, a full regrowth, with

a complete set of diagnostic tests, is performed.

Removing a node is a simple matter if the node is a leaf; only the link connecting it to the

network needs to be disconnected. This is accomplished with one chain. Otherwise, the

nodes downline from the failed node need to be reconnected to the network through

alternate links. If the node to be removed is the current root node, a new root link is

selected. The nodes downline of each outboard port of the failed node are added to a

reconnection queue, one queue for each branch which will be isolated when this node is

removed from the network. Each of these nodes is also added to a set of unreachable

38

nodes.The link connectingthe inboard port of the failed nodeto the network is then

disabled. Next, an attempt is made to reestablish a connection to each isolated branch via a

spare link to a node in the reconnection queue of that branch from a node which is still

reachable, i.e. is not a member of the unreachable node set. Only one such connection

needs to be made to restore communication to all the nodes in the branch. After the new

connection is enabled, the link connecting the failed node to this branch is disconnected.

As each branch is reconnected, the nodes in that branch are removed from the reconnection

queue. If any branch is successfully reconnected, branches which were not connected

during earlier attempts are tried again since more spare links become available as

communication is restored to nodes in other branches. This algorithm, while isolating the

failed node, restores communication to every reachable node in the network. Nodes which

cannot be reached because earlier failures have depleted the pool of spare links are marked
failed.

Figure 15 illustrates the steps needed to isolate a node from the network. Suppose that

Node 2 is to be removed from the network. First the link connecting Node 2 to Node 1 is

disabled. When this step is completed, Nodes 2, 3, 4, 5, and 6 are also isolated from the

GPC as shown in part II. Node 2 is the root of a tree with two branches, each of which

must be reconnected in turn. By enabling the link between Nodes 1 and 6 and

disconnecting the link between Nodes 2 and 4, one of these branches is reconnected to the

active network as shown in part III. Finally, a link is enabled between Nodes 5 and 6 and

the link between Nodes 2 and 3 is disabled. In this reconfiguration, Node 2 is isolated

while preserving several links in the network. In larger networks, the performance gain of

this approach over regrowth of the entire network is significant.

GPC]

I II III IV

Figure 15. Removing A Node And Reconnecting Its Branches

A single node failure can occur if the failed node is a leaf node, if its retransmission

function still works correctly but its status reporting capability is impaired, or if another

39

nodeis respondingto this node'saddress,making it appearthat this nodeis failed. If the
failed nodeis thecurrentrootnode,beforeproceeding,anewroot link is selectedfrom the
availablespares,statusis collectedusingthis new root link, anda new error analysisis
performed.Thefailed nodeis thenisolatedfrom thenetwork,asdescribedin theprevious
discussion,however,careis takennot to addressthisnodedirectly becauseof thepossible
addressingproblem. Whenthenodeis isolated,this nodeis againqueriedfor its status. If
a valid responseis received, indicating the presenceof a node which respondsto the
addressesof other nodes,the network is regrown with a full setof diagnostic teststo
isolatethis faultynode.Otherwise,anattemptismadeto find analternaterouteto thisnode
usinganyportexceptits previouslyfailed inboardport.Theconfigurationcommandsentto
thisnodeaspart of the link enabling procedure will disable the failed inboard port.

If two attempts to reconfigure the network have not succeeded in eliminating errors, then a

full regrowth is called for. This is the back up reconfiguration strategy, used when all else

fails.

40

3.0

3.1 I/O Network Manager

Process Name:

Inputs:

Outpu_

Requirements
Referent:

I/O NETWORK MANAGEMENT SOI_vVARE SPECIFICATIONS

I/O Network Manager

I/O Network Identifier

Network Topology

Results of Spare Link Chain

Network Status

Active Root Link

Unreachable DIUs

Network Usability

Data for Spare Link Cycling

I/O Network Functional Requirements,

Section 2.2, 2.3

Notes: None.

Description:

An instance of this process will be created for each network connected to a GPC.

However, the process will remain in a quiescent state until it is activated by the Resource

Allocator. At any given time, only one of the GPCs connected to an I/O network will host

the activated Network Manager of that network. The activation of a Network Manager by

the Resource Allocator will only require the scheduling of an existing process on the

system. Memory allocation, process instantiation, and the initialization of variables used

by this process will already have taken place. In this way, the activation of a Network

Manager can be accomplished very quickly in real time if necessary.

When a Network Manager process is created, some software initializations take place

which need to be performed by this process one time only. These include obtaining the I/O

Network Identifier of the network it will manage, reading the Network Topology from the

I/O Local Database, and obtaining an initial copy of Network Status from I/O Network

Status. This sequence is accomplished during the power on phase of system operation.

This preliminary work is not considered part of the routine operations of the Network

Manager.

Once it has been activated, the Network Manager will grow or initialize its assigned

network using the subprograms described in section 3.1.1. Once the network is

established, it writes the status of the network hardware as determined in the growth

41

processto Network Statuswhereit canbeexaminedby othersystemsoftwareservices.It
also generates thefirst setof commandsto beusedasDatafor SpareLink Cycling. It
signals theI/O CommunicationManagerthat the network is readyfor useby writing a
valueof In Serviceto NetworkUsability andagainentersaquiescentstate.At thispoint it
canbedeactivatedandreturnedto its initially passiveconditionby acall from theResource
Allocator or it canbecalleduponto reconfigurethenetworkor processtheResultsof the
SpareLink Chainby the I/O CommunicationsManager.The subprogramsinvolved in
network maintenanceare describedin section 3.1.2. Each time the Network Manager
initializes or reconfiguresa network in responseto a call from the I/O Communications
Manager,it indicatesthatit hascompletedits actionson thenetworkby writing avalueof
repaired to Network Usability. It also marks the Active Root Link and the list of
UnreachableDIUs for useby theI/O CommunicationsManager.If theNetwork Manager
is deactivatedby the ResourceAllocator it sets the Network Usability to out of service,

thereby signaling the I/O Communication Manager that it is no longer managing the

network.

The I/O Network Manager communicates with nodes by sending them commands and

processing responses which are formatted in accordance with the specifications detailed in

Appendix D, Node Specification. Section 3.1.3 describes the subprograms used to format

these messages and give the details of some low level utility routines used by the Network

Manager in network growth and maintenance operations.

42

3.1.1Process Name:

Input:

Outpu

Requirements

Reference:

Network Growth

I/O Network Identifier

Network Topology

Root Links

FastGrow Option

Current Channel

Network Status

Network Configuration

Root Link History

Current Channel

Network Status

Network Configuration

Root Link History

I/O Network Functional Requirements,

Section 2.4.1

Notes: None

Description:

This process makes two attempts to grow the network specified in the Network

Topology. The Network Topology describes all the interconnections which exist

in the network on a node by node basis. Network growth is accomplished by a set

of nested subprograms. The outermost subprogram verifies and validates the

results of a second subprogram which assumes that, although hardware faults

may be present in the network before the growth process commences, no

additional faults will occur while growth is taking place. This second subprogram

conducts the real business of network growth. It calls other subprograms to

finish the work of growing the network and then returns a boolean parameter to

its caller which indicates whether or not the network has been grown

successfully. For growth of a network to be considered successful, an active root

link must connect the GPC to the network (this implies a properly functioning

IOS and, except in the trivial case of a one node network, a root node which is

able to communicate with at least one adjacent node), and all non-failed nodes in

the network must be part of the active tree. If the subprogram indicates thaL

growth is not successful, it is ca!!ed a second ;time after a short delay has expired.

However, if the subprogram indicates that growth is successful, the calling

process causes the status collection chain to be executed from the active root link.

It analyzes this data by looking for any discrepancies between the status of the

43

nodesin thenetwork asreportedby the subprogramand thereal time statusof
thosenodes.This is to conf'Lrrnor disprove the assumptionmade by the inner
growth subprogramthatfailuresdid not occurin thenetworkduringgrowth.The
validity of theassumptionis somewhatdependenton thelengthof timeit takesto
grow the network.The fastergrowth is completed,the less likely a failure will
occurduringgrowth.Thusthis testmakesthegrowthprocessmorerobust.If the
real time dataindicatesthepresenceof a babbler,a failed IOS, or failed nodes
which thegrowth processreportedasactive, thena discrepancyexistsbetween
thereal stateof thenetworkandits stateasrecordedby thesubprogram.It cannot
bedeterminedwhetherthesefailuresoccurredafter growth of thenetwork was
completedor during the growth of the network. Nodeswhich fail during the
growth processbut after they havebeenaddedto the active treedo not havea
failure attributedto thembut maycauseothernodesto appearfailed. Thus,if a
discrepancyexists,thenetwork is regrown. If the secondtry is unsuccessful,a
seriousproblemexistson the network requiring either a function migration or
operatorinterventionto correct the problem.In the secondcase,thenetwork is
declaredto beinactiveandtheNetwork Manageris stopped.It maybe restarted
afterthecauseof theproblemhasbeeninvestigated.Thechoiceof actionis made
by theResourceAllocator. The rest of this section describes the algorithm used

by the second subprogram to grow the network. Subsequent sections describe

parts of this process in greater detail.

The inner subprogram Which assumes no faults occur in the network after growth

has begun has access to the same input and output parameters as the calling

process. However, faults can occur during network growth. If these faults are

detected, the growth process begins again from the top. An example of this type

of fault is the failure of the active IOS. This subprogram tries up to two times to

grow the network. If faults continue to occur during the growth process or if an

active root link as defined above is not found, the subprogram indicates to the

calling process that growth was not successful.

Prior to growing the network, some software initialization is necessary. The

status of each node and network interface in Network Status is set to idle. The

growth algorithm assigns some non-idle value to the status of each network

interface before completing its work. The status of each port is also set to idle,

however, idle ports in non-failed nodes are acceptable and the port status will not

necessarily have a non-idle value after growth is complete. The status of the

hardware components in the network reflect their current status only, based on the

most recent data about those components, not on their history of fa_',ure. Another

part of initialization concerns the node status collection chain which resides in

Dual Ported Memory. It is modified to ensure the execution of a status collection

transaction for every node in the network. Finally, the counters which keep track

of the number of DIUs and interfaces to remote GPCs are initialized to zero.

44

The growthof thenetworkbeginsbyestablishinganactiveroot link to one of the

root nodes and ensuring that this root node has a port which can be used as the

springboard to the rest of the nodes in the network. If an active root link is found,

the remaining nodes are added to the active tree. The algorithm for adding nodes

to the network will be discussed in section 3.1.1.2. This process conducts an

exhaustive search for a properly functioning connection to every node in the

network. Once this connection is established, the status of the node is upgraded to

active. The failure of a single port of a node does not cause the entire node to be

considered failed. Some nodes may not be reachable by any path. However, the

identity of these unreachable nodes will be apparent only after this phase of the

growth process is complete. Since any node whose status is idle after network

growth is completed is not reachable by any port, its status will be given a value
of failed.

After the nodal network is established through the active root link, the spare root

links to the network must be enabled and tested. If any DIUs are present on the

network, nodal ports adjacent to them are enabled next in a process called adding

DIUs. Finally, if this is a regional network, ports adjacent to remote GPCs must

be enabled in a process called adding remote GPCs.

The growth process is summarized below. Further details on each aspect of the
process are available in the indicated sections.

Repeat until growth is successful or two attempts fail to produce a stable
network

Establish a working connection to a root node (3.1.1.1)

If an active root link is established then

Add remaining nodes to the network (3.1.1.2)

Mark idle nodes failed

Add spare root links (3.1.1.4)

Add DIUs (3.1,1.5)

Add Remote GPCs (3.1.1.6)

Collect Node Status from all nodes in network as defined by topology

(3.1.2.1)

Validate Network Status

If no discrepancies in Network Status then

Network is grown successfully

45

3.1.1.1ProcessName: EstablishRootLink

Inputs: I/O Network Identifier

Network Topology

Root Links

Fast Grow Option

Current Channel

Network Status

Network Configuration

Root Link History

Outputs: Current Channel

Network Status

Network Configuration

Root Link History

Spawning Queue

Active Root Node Flag

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.4.1

Notes: None

Description:

This process is called as the tru'st step in the growth of a network. Its job is to set up a

properly functioning a connection to the network. The hardware involved in the connection

consists of an IOS, a root node, and the link between them. Establishing the connection is

a two step procedure. It requires that this hardware be put in a state which supports

communication between the GPC and the root node and that the correct operation of this

hardware be verified.

Since networks in general may have more than one physical connection to a GPC, the

approach taken is to order the root links in some way and then to try them in turn until a

properly functioning connection is found. The ordering of the root links is based on their

previous operating history. The fewer the errors associated with a particular root link, the

higher its priority in the ordering. The tally of errors is kept in the Root Link History. The

root link with the best record is tried first. The process is complete when a properly

functiomz._ _'oot link is found.

Each root link is tried in turn until a fully functional connection is established. If the f'u'st

attempt to connect a particular root node is not successful, the process is repeated a second

time. The second try is used as a filter for transient faults. When a successful connection is

46

made, the value of the Root Link Active Flag is set to true to indicate to the calling

subprogram that a working connection to the network has been made. Additionally, the

Current Channel is given the value of the FTP channel to which the active IOS is connected

and the Spawning Queue is initialized with the root node. If, on the other hand, no root

link is established, the value of the Root Link Active Flag is set to false.

The fix'st step in setting up a root link is to configure the root node so that the port adjacent

to the IOS is enabled and all its other ports are disabled. This is accomplished by preparing

a command to the root node which causes it to configure its ports as described and then

executing a chain which sends the command to the node. Setting up the command is

accomplished by means of a utility routine described in Section 3.1.3. Sending the

command is accomplished by means of another utility described in Section 3.2.4.1. The

second utility returns a Configuration Report describing the errors, if any, that were

detected during the execution of the chain.

The second step in setting up the root link is to verify that the communication hardware is

operating properly and that this root node can be used as a springboard to the rest of the

network. First the information in the Configuration Report is analyzed to determine

whether or not error free communication with the root node has taken place. The absence of

errors is evidence of a properly functioning full duplex communication link and implies that

the IOS and node hardware is fully operational. If the Fast Grow Option has not been

selected, a full set of diagnostic tests are conducted on the root node. These are described

in more detail in Section 3.1.1.3. If the root node passes all the diagnostic tests or if the

tests are bypassed because the Fast Grow Option is chosen, a determination is made about

the ability of the root node to function as a jumping off point for the addition of the

remaining nodes in the network. If diagnostic tests are performed, this determination is

made by identifying a non-failed port on the root node which is adjacent to another node.

This can be done by using the Network Topology and the Node Status information.

However, in the case when diagnostic testing is bypassed, this is accomplished by finding

a link to an adjacent node which can be enabled to support full duplex communication.

Once a root node which has at least one port which can be enabled to communicate with an

adjacent node has been found, the Node Status of this node is marked active, the port status

of the port adjacent to the IOS is also marked active, the Interface Status of this interface is

marked active, and the configuration of this node is recorded in Network Configuration. To

accomplish the latter means that the Node Configuration of this node shows the enabled

port marked Inboard and the other ports marked Idleport. This process is then complete.

The preceding paragraph describes the actions taken by this process if the Configuration

Report indicates that no protocol errors are detected when the command to change its port

enable is sent to the root node. When errors are detected, they are processed before either a

second try is made or the next root link is tried. The error processing proceeds as follows.

If the error detected is a channel failure, a retry is not undertaken since it is unlikely that the

channel can be restored in time to make this a viable root link. Instead, the Interface Status

47

is markedFailedChannel and the next root link is tried. If the error detected is a Babbler,

the Contention Option is set to run the configuration chain withoutcontention before the

retry is undertaken. A babbler on the network prevents a contention poll from running to

completion. Therefore, the command to the root node to disable all but its inboard port will

never be transmitted. However, the babbling may be due to some remote component.

Since the links are full duplex, only the incoming transmission line may be affected.

Executing the chain without contention causes the command to the root node to be

transmitted over the unaffected outgoing transmission line. Once the root node receives and

obeys this command, the babbling transmissions will not be retransrnitted by the root node

to the IOS and the babbler error indicators will not continue to register the presence of a

babbler. If any other errors are detected such as no response or HDLC protocol errors, the

same configuration chain is simply run a second time. If errors are detected on the second

try, the interface is marked failed IOS, the status of the port adjacent to the IOS is also

marked failed and the next root link is tried.

48

3.1.1.2 Process Name:

Inpu_

Outlmls:

Requirements

Reference:

Adding Nodes to Network

I/O Network Identifier

Network Topology

Fast Grow Option

Curr_nt Channel

Network Status

Network Configuration

Spawning Queue

Network Status

Network Configuration

Network Subscribers

I/0 Network Functional Requirements,

Section 2.4.1

Notes: None

Description:

This growth algorithm generates the shortest path from the source processor to any node in

the network. Furthermore, ff a path exists to any node in a network, this algorithm ensures

that it will be found and activated, even if the network is degraded by failures.

This subprogram is called into service after Establish Root Link (3.1.1.1) has established a

fully operational root link to a root node of this network. The root node is the first entry in

the spawning queue, a data structure used to control the growth of the network. An entry

in the queue consists simply of the node number of a node which has been successfully

added to the network but from which growth has not yet taken place. Two pointers are

used to mark positions in the queue: the Top and the Next Entry. The Top points to the

node in the queue from which growth is currently taking place. This node is called the

spawning node. The Next Entry points to the next empty position in the queue. As nodes

are added to the network, they are placed on the spawning queue at the Next Entry point

and the Next Entry point is incremented to point to an empty position in the queue. The

spawning queue thus grows from the bottom. As growth of the network proceeds, the

topmost node in the spawning queue is removed from the queue and used as the jumping

off point for further growth. The root node becomes the fu'st spawning node. The growth

algorithm then enters a loop in which each node in the spawning queue is processed in turn

until the spawning queue is emp_.

The processing of the spawning node proceeds on a port by port basis. The action taken

depends on the kind of element found adjacent to each port. The identity of that element is

49

obtainedfrom the Network Topology. If the adjacentelementis a remoteGPC, the
spawningnodeandtheport of thespawningnodefacingthatelementisplacedon theGPC
subscriberlist. If the adjacentelement is a DIU, similar entries are made to the DIU
subscriberlist. Theseportswill be enabledafter the network nodal growth is complete.
However, if the adjacentelementis a nodewhosestatusis idle, i.e. not yet part of the
active tree,anattemptis madeto setup a functional link to that node,referredto asthe
targetnode.If theattemptis successful,thetargetnodeis placedattheendof thespawning
queue.Creatingafunctionallink requiresthataport of thespawningnodeandaport of the
target node be enabled; the spawning node is enabled first. Enabling this link is
accomplishedby a utility subprogram,EnableLink, describedin section 3.1.3. If the
attempt to enable the link between thesenodes is not successful, the Enable Link
subprogramwill disconnectthe nodes. If thereasonfor.the failure is the detection of a

babbler, this subprogram runs a test for a babbler to ensure that the attempt to disconnect

the babbling node was successful. If it is not, an exception is raised which causes the

growth to begin again from the start. When the attempt to enable the link is not successful,

the link is left in an disconnected state and the the status of the two ports used in the

connection are marked failed. When the link is connected successfully and the fast growth

option is selected, the target node is added to the spawning queue, its status is marked

active, the status of the ports connecting the spawning node and the target node are marked

active, and the new configuration of the two nodes is noted in Network Configuration. The

latter requires the configuration of the port in the spawning node to be marked outboard and

the configuration of the port in the target node to be marked inboard, reflecting the flow of

data with respect to the active IOS. However, if the fast growth option is not selected, the

target node is subjected to a set of diagnostic tests which it must pass before being added to

the spawning queue. These tests are described in section 3.1.1.3. If it does not pass these

tests, the status if the target node is marked failed. If it does pass the tests, however, it is

added to the spawning queue and the various status records are updated as before. When all

the ports of the spawning node have been processed in this way, the next node in the

spawning queue becomes the spawning node. Network growth continues until the

spawning queue is empty.

As mentioned above, this algorithm detects and isolates babbling network components,

thus making it a useful backup tool for network maintenance. When a port of a spawning

node adjacent to a babbler is enabled, the babbler is detected because its babbling

transmissions interfere with the status report the spawning node sends following its

recon" lguration. Following the detection of the babbler, the spawning node is sent another

command instructing itto disable the port adjacent to the babbler, thus isolating the babbler

from the rest of the properly functioning network. The method works because the network

links are full duplex and the reconfiguration command will reach the spawning node

through the data line not corrupted by the babbler. If the spawning node itself is babbling

from a spawning port, the target node will not respond to the corrupted message. Thus the

target node will not be connected to the babbler.

50

3.1.1.3Process Name:

lnpuls:

Outlx

Requirements

Reference:

Diagnostic Testing

Node Under Test

Inboard Port of Node Under Test

I/O Network Identifier

Network Topology

Current Channel

Network Status

Network Configuration

Network Status

Network Configuration

Passed Diagnostic Tests

I/0 Network Functional Requirements,

Section 2.4.1

Notes: None

Description:

For each port of the Node Under Test adjacent to an idle node, a series of fault detecting

diagnostic tests is performed. The tests are sequential in nature, and if any test falls, the

remaining tests in the sequence are not performed. The first test determines if the link

between two nodes can be activated. The second test determines whether or not the

adjacent node transmits on the port adjacent to the Node Under Test after that port has been

disabled. The third test determines whether or not the Node Under Test itself retransmits a

message from a disabled port. After this set of tests is completed without error, the last test

is performed. This final test determines if the Node Under Test talks out of turn to

addresses of other nodes in the network. This test could be expanded to include the
addresses of DIUs on this network.

The first test is performed by using the Enable Link Utility routine described in section

3.1.3. If the attempt to enable the link is successful, the link is left in the enabled state so

that the next test can be executed.

In the second test, a configuration command is sent to the adjacent node over the newly

enabled link instructing that node to disable all its ports. The node protocol is such that it

will carry out this command before transmitting a reply. A properly functioning node

transmits a reply from all enabled ports to every command it receives. Since no ports are

enabled, this message should not be transmitted. Thus, the node passes this test if no reply

to the command is received. A node from which a reply is received is considered failed and

51

hasits status marked accordingly. When starting the third test, the adjacent node has all its

ports disabled.

In the third test, a chain of three transactions is transmitted on the network. The first

transaction is sent to the node under test commanding it to disable all of its ports except the

inboard port connecting it to the established network. The second transaction is sent to the

adjacent node commanding it to enable the port facing the node under test for one

transmission only. The third transaction is sent to the node under test asking for its status.

If the node under test is functioning properly, it will not retransmit any messages, including

the command making up the second transaction, to the adjacent node. On the other hand, if

it is has failed such that it does retransmit a message from a disabled port, the adjacent node

will send a reply which may or may not be transmitted by the node under test back to the

IOS. In either case, the transmission of this message will cause the activity detector and the

valid message detector for the port facing the adjacent node to record the transmission and

to return this information as part of its status message. The node under test passes this

third test if no message from the adjacent node is received and the status indicator for the

port in question shows no activity and no valid message received. If the node under test

fails this test, its status and the status of all its ports is marked failed. When the above three

tests have been performed for every port of the node under test adjacent to an idle node, the

node under test is configured so that only its inboard port is enabled. It is then ready for the

last test.

In the last diagnostic test, each node in the network is commanded to report its status,

whether or not it is in the active tree. If an unconnected node (i.e. one which is not on

either the spawning queue or the active node list) responds to this command, the most

recently connected node is talking out of turn to this address. This newly added node must

be disconnected from the active tree by setting the correct spawning node port to a null

state. Furthermore, its status in Node Status is marked failed, since the address decoding

function of a node is a central function, independent of the port receiving the address. A

previously connected node could also respond with errors. This means that either this node

has recently failed or the most recently added node is talking out of turn. This last added

node is then removed from the network as described above. The node or nodes which had

errors on the previous test are again queried for status: If the error indicators are gone, it

confirms the talker out of turn hypothesis, and the status of the removed node is set to

failed. If not, it indicates that a failure has occurred during the growth process. In the

former case, the growth process is continued. In the latter case, the growth process must

begin again from the start.

52

3.1.1.4ProcessName: ConnectingSpareRootLinks

Inpuls: I/O Network Identifier

Network Topology

Root Links

Fast Grow Option

Current Channel

Network Status

Network Configuration

Root Link History

Output: Network Status

Network Configuration

Root Link History

Requirements

Reference:
I/O Network Functional Requirements,
Section 2.4.1

Notes: None

Description:

This subprogram attempts to enable the inboard facing port of every root node whose stares

is active but which is not connected to the active lOS or to a failed lOS. Up to two tries are

made to obtain an error free response from the root node in this configuration. If the fast

grow option is not selected, each newly enabled root link is tested by collecting status using

that interface. The results of the attempt to set up this connection are used to update the

status of the interface and root nodes. Successfully enabled root links have their status set

to available. Errors are tallied against the offending root link in Root Link History.

If the first response to the command enabling the port adjacent to the 10S reveals the

presence of a babbler, the second try is sent without contention. If this also indicates a

babbler is present, the root link is disconnected and the interface is marked failed IOS.

53

3.1.1.5ProcessName: AddingDIUs

Inputs: I/O Network Identifier

Network Topology

Current Channel

GPC Subscriber List

Network Status

Network Configuration

Outlmts: Network Status

Network Configuration

Requirements

Reference:
I/O Network Functional Requirements,

Section 2.4.1

Notes: None

The ports adjacent to DIU subscribers on the subscriber list are enabled one at a time. If no

errors are reported from this transaction, the port remains enabled. However, if errors are

reported the port is returned to an inactive state. An error detected after enabling this port is

due to a babbling DIU or a failure in the node adjacent to the DIU which occurred after the

node is successfully added to the network. In either case, at this point the only action taken

in response to the detection of an error is to return the port to an idle state. The final

configuration of the port is recorded in Network Configuration; the status is recorded in

Network Status. If the connection is operational, the port is marked outboard and its status

is marked active.

54

3.1.1.6Process Name:

Inputs:

Outpt

Requirements

Reference:

Adding Remote GPCs

IIO Network Identifier

Network Topology

GPC Subscriber List

Current Channel

Network Status

Network Configuration

Network Status

Network Configuration

I/O Network Functional Requirements,

Section 2.4.1

Notes: None

_Descripfion:

The ports adjacent to GPC subscribers on the subscriber list are enabled one at a time. Once

the network manager gives other GPCs access to the network, the manager must use the

contention rules which govern access to a multi-user network. Since a GPC which is facing

a port which is not enabled will not detect any network activity, it may be attempting to use

the network at the time the port is enabled. This could result in errors being detected in the

node's reply to its configuration command. Therefore, errors in the node status which is

returned after enabling the root node port of a GPC are ignored.To verify that the GPC is in

fact not babbling, however, the manager must ask for a status read of that node with

contention. If the transmission has errors, that port is returned to a null status. This

command is first sent with contention. Only if the errors persist will the command be sent

without contention. This phase of network growth is complete when all the ports on the

subscriber list have been enabled and verified for proper functioning. Node Configuration

and Node Status are updated following each verification transaction.

55

3.1.2 Process Name: Network Maintenance

Input: I/O Network Identifier, Network Topology, Root Links,

Current Channel, Network Status, Network Configuration,

Error Report, Root Link History

Outlmls: Current Channel, Network Status, Network Configuration,

Root Link History

Requirements
Reference:

I/O Network Functional Requirements,
Sections 2.4.2, 2.4.3

Notes: None

Description:

The various services provided by this process are scheduled by the I/O Communication

Manager. The services provided axe: status collection from the nodes in the network, spare

link cycling and fault identification and network reconfiguration. If spare bandwidth is

available on a network, the I/O Communication Manager may choose to collect node status

or to retire an active link and bring a spare link into service. If errors are detected during the

execution of an I/O request for an application program, during the execution of the node

status collection chain,.or during the attempt to cycle a spare link, the I/O Communication

Manager takes that network out of service and allows the Network Manager to have sole

access to the network until the reconfiguration has restored full service to all non-failed

network nodes and subscribers.

3.1.2.1 Process Name: Network Status Collection

Inputs: I/O Network Identifier

Active Root Link

Logging Enable

Outlmts: Status Collection Report

Requirements

Reference:
I/O Network Functional Requirements,
Section 2.4.2

Notes: None.

Description:

Network Status Collection is the fault detection mechanism of the Network Manager. When

this subprogram is called, it is assumed that the Network Manager is in control of the

56

interface to the network, i.e. that the Communications Manager has taken the network out

of service. In addition to collecting status from each non-failed node in the network, this

subprogram performs some preliminary analysis of error information. This information is

obtained by the IOS as it attempts to execute the status collection chain, a chain which is

always executed with contention. The details of the execution of this chain are given in
Section 3.2.4.2.

The Status Collection Report provides the Network Manager with a summary of the error

information obtained from a preliminary analysis of the data which the IOS provides after

executing the a status collection chain. When the IOS transmits messages on the network to

a node, it observes aspects of the communication and records those observations in

registers and buffers for later processing. This constitutes a first stage of fault detection and

includes detection of the failure of a node to transmit a response to a command in a

reasonable amount of time, the presence of transmission errors on the network during a

response from a node, the incorrect number of words in a response, and other violations

of the communication protocol. In addition to detecting errors on transactions to individual

nodes, the overall performance of the network is monitored for failures which impede the

proper functioning of the contention sequence. These failures include a babbler which is

flooding the bus with meaningless signals and a data line which is holding the network in a
"stuck on one" condition.

The summary presents a synopsis of the information provided by the IOS with conclusions

drawn about the following error conditions: an interface failure, a babbler and individual

errors detected for each node. If the summary reports that an interface failure has occurred,

it also states whether the cause is a failed IOS or a failed channel connected to the active

IOS. If the summary reports that a babbler is present on the network, it also specifies

whether the babbler was detected during contention for the network or during data

transmission. When either of these errors are present, no further data is provided since the

integrity of this data is in question. Furthermore, the Network Manager's strategies for

reconfiguring the network to eliminate these problems do not require information from

individual nodes. Finally, if neither an interface failure or a babbler is detected, an error

indicator is provided for each active node in the network. ,This error indicator simply notes

that an error has occurred. The error could be due to a variety of causes, including a no

response error, an I-IDLC protocol violation, or a check sum error. The type of error is

logged in the I/O Network Error Log, however, it is not passed back to the Network

Manager, since its logic does not require this level of granularity in order to correctly

reconfigure the network.

In fu.na'e implementations of the Network Manager, additional sources of information may

be used as part of the status collection aspect of network FDIR. In particular, this could

include information from the I/O Communications Manager about errors detected during

transactions with specific DIUs. For regional I/O networks, I/O Communication Managers

in remote GPC subscribers to the network would send this information to the Network

57

Managerover the intercomputer network. Errors reported by the I/O Communication

Manager when no errors have manifested themselves during node status collection are

evidence of transient faults in the network, faults with DIUs or connections to DIUs, or of

other faults which the Network Manager's use of the network does not trigger. This

information is useful in building up a statistical profile of network components. In future

AIPS implementations it may be possible to support multiple links to DIUs from different

nodes or even between different networks. With this cap_bility, errors which result from

faults in the link between a node and a DIU (or because a node connected to a DIU is

failed) could result in a reconfiguration involving the active link to a DIU. Since the actual

data flow in the network is a function of the GPC using the network, errors detected by

remote GPCs may not be detectable by the Network Manager.It is possible to devise

algorithms for isolating this type of fault. However, this work is beyond the scope of the

present implementation.

3.1.2.2 Process Name: Network Fault Analysis

lnpuls: I/O Network Identifier

Active Root Link

Network Topology

Network Configuration

Status Collection Report

Outlalls: Error Analysis Report

Requirements

Reference:
I/O Network Functional Requirements,
Section 2.4.2

Notes: None.

Description:

The purpose of this process is to analyze the data provided by the Status Collection Report

in order to identify the both the type of fault responsible for the errors and, if possible, the

faulty network element itself. This is accomplished by a set of subprograms. There are

three types of analysis which are performed: transient detection, data analysis, and error

analysis. Each is described in this section.

The Network Manager fhst filters the data in the Status Collection Report through transient

analysis. If this subprogram concludes that the error is a transient, no further analysis is

performed. However, if the fault is permanent, the data is screeened for errors fh'st by

data analysis and second by error analysis. In some cases the analysis of the fault is not

completed by these subprograms; additional information is necessary before a final

conclusion can be drawn. In such cases, the analysis is continued by the subprograms

58

which make up Network Recon_figuration. This analysis is discussed in detail in Section

3.1.2.3. That section also describes the actions taken by the Network Manager in response

to the various conclusions arrived at in the network fault analysis process discussed here.

Transient Analysis is a subprogram which discriminates between transient and permanent

faults in the network. It accepts a Status Collection Report as an input parameter. If this

parameter indicates a fault is present in the network, it collects network status again and

compares the second report with the first. If the second report finds no faults in the

network, then the fault is assumed to be a transient. If the error reports are identical, then

the fault is deemed permanent, i.e. not transient in nature. Finally, if both reports agree that

a fault has occurred, but disagree on the nature of the fault, network status is collected a

third time. In this case, if the second and third reports agree, the fault is judged to be

permanent; otherwise a transient error is declared. The argument here is that perhaps a

permanent fault occurred during the execution of the first status collection chain. If this is

the case, the errors observed by the first and second status collections could be different.

Consider the following scenario. During the first status collection, a node reports its status

correctly, but then a link leading to that node is damaged, and other nodes downline of the

first node have errors logged against them. When status is collected a second time, the node

in question also has an error. Thus the first two reports do not agree, but the second and

third reports do.

Of course thisisa simplisticapproach to a very difficultproblem, namely differentiating

between transientand intermittentfaults.A more sophisticatedapproach would be to

maintain a statisticalhistoryof faultsand use thisas the basisfor isolatinga component

which is intermittentlyfaulty. However, thisanalysis is deferred to more advanced

implementationsof network faultanalysis.

Data analysis is the second major part of network fault analysis. Data analysis is the

process whereby the status information returned by the nodes is reviewed for the purpose

of extracting information about faults in the network. A dcscription of the data returned by

a node is contained in Appendix D, the Node Specification. These faults may or may not

produce other error symptoms. This subprogram takes the Status Collection Report as an

input parameter. Since valid data from the nodes is not included in the report if an interface

failure or a babbler is present, data analysis only proceeds when these failure modes are not

detected. Similarly, data is not included from nodes which have errors attributed to them

during the execution of the status collection chain. Howcvcr, since these failure modes can

produce error symptoms, data from error frec node responses is analyzed cvcn when other

node responses do have errors. The purpose of this analysis is to detect a node which is

transmitting from a port which should be disabled. The transmission may be simple,

random noise or a valid message retransmitted by a disabled port due to some fault in the

node hardware. This is detected whcn a node records any activity on the network (i.e. a

change in voltage from low to high or vice versa) or the reception of a valid transmission

by a non-failed port which the Network Configuration shows to be disabled or idle.

59

(Adjacent ports are always in the same configuration, either both enabled or both disabled.

They also have the same status, either both active, both idle or both failed.) If this condition

was detected previously, the status of the port which is adjacent to the failed port will have

a failed status, as well as disabled configuration. Hence, even though the port records the

continued presence of the babbler, the correct reconfiguration has been made to contain the

babbler and repeated error processing is neither necessary nor desirable. If more than one

node is found to have this fault, a report indicating an unsuccessful analysis is returned by

this subprogram. (Of course, several nodes may detect this fault but the fault is attributed

to the node transmitting on the disabled port not the node receiving the faulty transmission.)

When this fault is not present in the network, the report returned indicates no data errors

were found. Finally, if a node is found with this fault, the error report indicates this fact

along with the ID of the faulty node.

Error Analysis is the third and final subprogram in network fault analysis. As its name

implies, error analysis is the process of deducing which network element produced the set

of errors recorded in the Status Collection Report. Of course not all sets of errors are

amenable to analysis. The input space of this subprogram has many combinations which do

not pinpoint a specific network component as being faulty. In these cases, the subprogram

returns a value of undiagnosable errors. Furthermore, the assumption underlying all the

deductive reasoning in the error analysis, is that only one component has failedand this

failure gives rise to all the error symptoms.

If the Status Collection Report indicates that an interface failure has occurred, the error

analysis report attributes the errors to a root link failure, indicating the root link which

failed and the cause of the failure, either failed IOS or failed FTP channel. In a similar

manner, if a babbler is reported, the error analysis report attributes the errors to a babbler.

If neither of these errors is present, the analysis proceeds with an examination of the errors

attributed to non-failed nodes in the network.

If all the nodes in the network have errors, the error analysis report attributes the errors to a

root link failure, indicating the root link which failed as before but also indicating the cause

as a failed IOS. If some nodes have errors and some nodes do not, two possible failure

modes are considered: a failed link (or node) through which no transmission takes place or

a single node failure. The single node failure symptom could be indicative of a node which

does not respond to commands but which continues to retransmit messages as it did before

the failure. It could also be a node which itself is not failed but to whose address another

node in the network responds. The single node failure is easy to diagnose since exactly one

node in the Status Collection Report shows an error. The reconfiguration strategy used in

this case is described in Section 3.1.2.3. If more than one node has errors but fewer than

all nodes have errors, the remaining problem is to determine if the cause of those errors

appears to be a link or node whose transmission/retransmission function is no longer

operational. The basic idea is that when a link or a node fails in this way, then all nodes

downline of this fault also have errors. The signature of such a failure is that nodes

60

involved form a tredike pattern in the network. It should be noted that another failure mode

which would produce a similar pattern of errors is a node which babbles on all its outbound

ports. To determine if the observed errors fit this case is a three step process. The fast step

is to identify a node which qualifies as the root of the failed tree. Such a node is a node

which had errors itself but which has an inboard port (a port which receives commands

sent by the IOS) adjacent to a non-failed node. To prove this fault hypothesis valid,

exactly one such node should have this characteristic. If more than one such node exists,

the fault is considered undiagnosable. However, if a root is found, the next step is to

determine whether or not all nodes downline of the root had errors attributed to them. This

is accomplished by a recursive subprogram. The subprogram accepts a node as a

parameter;, the node is referred to as the current node. The fh'st call to the subprogram

passes the root of the failed tree as the input parameter. The subprogram examines the

nodes adjacent to the outboard ports of the current node. If such a node does not have

errors attributed to it, the subprogram returns a value of false and the fault is considered

undiagnosable. However, if a treelike pattern is established, the last part of the pattern

checking process can proceed. This step verifies that all the nodes which had errors

appeared in the failed tree, i.e. no nodes with errors lie outside the tree. If nodes with

errors are found outside the tree, the fault is considered undiagnosable. If all three steps in

the process support the failed link/failed node hypothesis, an error analysis report is

returned stating the fault is a failed link or a failed node. Additional information contained

in the report is the node number of the failed root of the tree, the port number of the inboard

port of this node, and a list of nodes in the tree. The final determination of whether or not

the fault is due to a failed link or a failed node is made during network reconfiguration.

61

3.1.2.3ProcessName: NetworkReconfiguration

Inputs: I/O Network Identifier

Network Topology

Root Links

Active Root Link

Network Configuration

Network Status

Error Analysis Report

Outlxas: Network Status

Network Configuration

Root Link History

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.4.3

Notes: None.

Description:

The purpose of this process is to reconfigure the network so as to restore error free

communication to all reachable, non-failed nodes in the network. The action taken by this

process will depend upon the type of failure reported in the Error Analysis Report. The

fault identified in this report is actually a hypothesis about what is causing the errors on the

network. This process in effect tests this hypothesis and then verifies that the network is

again fully operational. Thus the network may go through several intermediate

configurations before the reconfiguration process is complete.

There are six classes of faults identified by the Network Fault Analysis process described

in Section 3.1.2.2. They are a root link failure, a babbler, a link or node failure, a node

which transmits from a disabled port, a single node failure, and an undiagnosable failure.

The Error Analysis Report indicates which one of these failure modes is presently causing

disruptions on the network. Depending on the type of fault, it may also contain some

additional information about the the source of the problem. A separate strategy exists to

deal with each of these fault classes.

The reconfiguration processis considered complete when the node status chain is executed

on the reconfigured network and does not detect any errors. The backup strateg¢ :n for

dealing with error phenomena which occur during a reconfiguration attempt but which are

not anticipated is network regrowth.

62

In general,reconfiguration strategies are designed to deal with both active and passive

faults in the hardware which makes up the root link. In particular, this includes the IOS,

the active ports of the root node, and the cable between the IOS and the root node. Passive

faults are characterized by the non-retransmission of data, sort of a barrier or obstacle to

data flow in the network. A disconnected cable is an example of such a fault; data cannot be

retransmitted over this cable but transmission between other connections in the network is

not affected. Active faults are characterized by the disruption of data flow in the network

beyond the boundaries of the failed component itself. An IOS with a transmitter stuck on

high is an example of this type of fault; the stuck on condition is retransmitted throughout

the network, masking or disrupting transmissions between network connections remote

from the failed part. Since the same error conditions generated by a broken root link could

also be generated by an IOS stuck on high, the reconfiguration algorithm must identify the

specific cause of the problem so as to effect a repair. In the case of a passive fault, this

means establishing another root link. In the case of an active fault, the faulty component
must also be isolated.

A subprogram called Switch Root Link is designed to reconfigure a network in the

presence of a root link failure. Prior to establishing a new root link to the network, the

Switch Root Link subprogram updates the interface status of the channel connected to the

failed root link to reflect the cause of the failure, a failed IOS or a failed channel. It also

increments the error count against the failed root link in the root link history. Next a survey

of the spare root links which are available to this network is conducted. An interface whose

status is failed because of a faulty IOS is not a considered to be spare. However, the

status of an interface which is failed due to an FTP channel failure may be upgraded to

available if GPC FDIR now reports the channel as back online. The survey provides a

prioritized list of spare root links, the lower the error count in root link history the higher

the priority of a given spare.

If no spare root links are found but at least one root link is connected to a failed FTP

channel, the Network Manager process suspends itself waiting for the outcome of GPC

FDIR attempts to bring the failed channel back online. As a last resort, if no channels are

brought back after a reasonable delay, the Network Manager tries to regrow the network.
This will cause even failed root links to be tried one more time.

However, in the case where spare root links are available, each is tried in turn until a non-

failed root link is found or until another type of fault is diagnosed. First, the new interface

is used to execute the node status collection chain. Next, the node configuration table is

updated to reflect the new root link; some outboard ports will become inboard and vice

versa. Using this new configuration, an error analysis of the results of the node status

chain is performed. If the analysis is unsuccessful, indicating the presence of an

undiagnosable failure mode, the network is regrown. If no errors are detected, as would be

expected in the case of a passive failure involving only the IOS, the inboard port of the root

node, and the cable between them, the reconfiguration process is complete and the status

63

of thenew root link is marked active. If a root link failure occurs, the status of this root link

is marked failed and the next available root link is tried. Finally, if either a single node

failure, a babbler, or a link or node failure is detected, the root link switch is considered

successful but the reconfiguration process is not yet complete. In this case, the

reconfigtwation process starts over again from the beginning, with a new root link but this

time dealing with a new fault. This would be the case for an active fault such as a babbling

IOS or a passively failed root node which now must be removed from the network so that

service to nodes downline of it can be restored.

When a babbler is detected in the network, the network is regrown using the fast grow

option since the detection and isolation of a babbler does not require any diagnostic testing.

However, if the fault analysis has not been able to diagnose the failure mode, the network

is regrown without the fast grow option since the diagnostic tests uncover failure modes

which may produce unanalyzable error patterns, such as nodes which respond to the

addresses of other nodes and nodes which respond late.

A subprogram called Repair Link or Node Failure is called to handle network

reconfiguration when the Error Analysis Report indicates the presence of a failed link or

node. Since a failed node generates the same error pattern as a failed link, this subprogram

must determine which fault has actually occurred and re,configure the network accordingly.

The Error Analysis Report contains the node number of the node suspected to be failed, its

inboard port and a list of nodes which are unreachable as a result of this failure. It is first

assumed that a link has failed. The failed link is disconnected and an attempt to reach the

failed node, i.e. the node immediately downline from the link, is made by using any spare

ports on that node which are adjacent to nodes not in the failed node list. The chain used to

reconnect this node to the rest of the network contains three transactions instead of the

usual two. The first two transactions enable the ports on either side of the new link; the

third transaction disables the former inboard port of this node in case the node adjacent to

that inboard port is a babbler. When this strategy fails to restore communication with the

failed node (possibly because no spare ports are available), data is assembled which will

allow each branch of the failed tree to be reconnected to the active network. This data

consists of a list of nodes for each branch of the failed node, i.e. a separate list for each set

of nodes which lie downline of each of its outboard ports. Only one successful connection

to any spare port on a branch needs to be made in order to restore communication to the

entire branch (and possibly to the failed node and all other nodes in the failed tree). Again a

three transaction chain is used, this time for a different purpose. The fh'st two transactions

enable the ports on either side of the new link while the third transaction attempts to obtain

status from the failed node. If the failed node correctly returns its status, the ret_air is

complete and the absence of errors is verified by collecting status from every node ir_' ,.he

network. If the failed node is still not reachable, the port connecting this node to the

present branch is disconnected and the proper functioning of the newly enabled link is

verified. Then all the nodes on this branch are removed from the failed node set. The net

effect of this process is to restore communication with all reachable nodes in the network

64

while isolating the failed node. As communication to each branch is restored, the possible

pool of spare links increases. Thus ff any branch was not connected because of a lack of

spare finks, this branch is retried whenever a connection to another branch is successful.

Any nodes which are still unreachable at the end of this exhaustive process are assigned a
status of failed.

If a node retransmits valid data from a port which should be disabled, the node must be

removed from the network. This failure mode is distinguished from a babbler which is

always transmitting a random bit stream or is stuck on one. When a babbling port is

identified, the adjacent port of the neighboring node is disabled. This neighboring node

will not retransmit from its other enabled ports anything received by the disabled port.

Furthermore, the node will ignore any random bit patterns it receives. However, if the

neighboring node receives a request for status addressed to itself on a disabled port, it will

transmit its status from all its enabled ports, even though it does not retransmit the initial

request. If this failed node is not removed, each time the manager asks for status from the

node adjacent to this port, it would receive two valid commands to report its status. Only

one response is expected. Once the first response is received, another node will be

commanded to report its status. The second response of the node may interfere with the

reply of a node whose transaction is later in the chain, making it appear that this next node

has failed to respond correctly to a command. Once the failed node has been removed from

the network, status is collected from the remaining nodes to verify that in fact the fault has

been identified and isolated. If errors are still detected in the network, a full regrowth, with

a complete set of diagnostic tests, is performed.

The subprogram which removes a node from the network is called Remove Failed Node

and Reconnect to Trees. As the name implies, removal of a node is a simple matter if the

node is a leaf; only the link connecting it to the network needs to be disconnected. This is

accomplished with one chain. However, if the node is the root of a subtree in the network,

the nodes downline from the failed node need to be reconnected to the network through
alternate links.

If the node to be removed is the current root node, a new root link is selected from the

spare root links in the network. Prior to beginning the reconfiguration of the network, the

nodes downline of each outboard port of the failed node (i.e. the nodes on each branch of

the tree emanating from the failed node) are added to a reconnection queue, one queue for

each branch which will be isolated when this node is removed from the network. Each of

these nodes is also added to a set of unreachable nodes. The link connecting the inboard

port of the failed node to the rest of the network is then disabled. Next, a loop is entered in

which an attempt is made to reestablish a _oaraection to each isolated branch via a spare link

to a node in the reconnection queue of that branch from a node which is still reachable, i.e.

is not a member of the unreachable node set. Only one such connection needs to be made to

restore communication to all the nodes in the branch. After the new connection is enabled,

the link connecting the failed node to this branch is disconnected. As each branch is

65

reconnected,thenodesin thatbranchareremovedfrom thefailed nodeset.If anybranchis
successfullyreconnected,brancheswhich werenot connectedduringearlierattemptsare
triedagainsincemoresparelinks becomeavailableascommunicationis restoredto nodes
in other branches.Thus this algorithm, while isolating the failed node, restores
communicationto everyreachablenodein thenetwork. Nodeswhich cannotbereached
becauseearlierfailureshavedepletedthepoolof sparesaremarkedfailed

If a single node in the network has errors, the reconfiguration is handled by a subprogram

called Reconnect, Remove or Regrow. This failure can occur if the failed node is a leaf

node, if its retransmission function still works correctly but its status reporting capability is

impaired, or if another node is responding to this node's address, making it appear that this

node is failed. If the failed node is the current root node, before proceeding, a new root link

is selected from the available spares, status is collected using this new root link, and a new

error analysis is performed. The failed node is then isolated from the network, as described

above in the discussion of Remove Node and Reconnect to Trees, however, care is taken

not to address this node directly. When the node is isolated, this node is again queried for

its status. If a valid response is received, indicating the presence of a node which responds

to the addresses of other nodes, the network is regrown with a full set of diagnostic tests

to isolate this faulty node. Otherwise, an attempt is made to find an alternate root to this

node using any port except its previously failed inboard port. The configuration command

sent to this node as part of the link enabling procedure will disable this failed inboard port.

If two attempts to reconfigure the network have not succeeded in eliminating errors and

network regrowth has not yet been tried, then a full regrowth is called for. This is the back

up reconfigumtion strategy, used when all else fails.

Following the reconfiguration of a network, the Network Status is updated to reflect the

current state of the network hardware. If any nodes have been isolated from the network as

a result of the reconfiguration, the transaction for that node is removed from the status

collection chain. A new set of commands to cycle a spare link are set up and the Network

State is given the value Repaired.

66

3.1.2.4ProcessName: SpareLink Cycling

Inputs: I/O Network Identifier

Network Topology

Root Links

Active Root Link

Network Configuration

Network Status

Outpt Network Status

Network Configuration

Spare Link Cycling Log

Requirements

Reference:

IIO Network Functional Requirements,

Section 2.2

Not_: None.

Description:

This process determines whether or not spare links are operating properly by routinely

using a spare link as an active link in the network. When a spare link is called up for

service, an active link is retired. The spare links are said to be cycled through the network

since each spare eventually serves some time as an active link. The algorithm does not

insure that the ratio of the time spent in an active state to the time spent in an idle state will

be the same for all links. It does however insure that every idle link spend some time in an

active state on a regular basis. For a network with S spare links and a cycling period T,

each link in the network will be active at least T seconds of every ST seconds of operation.

Some links may never be taken out of service. Cycling spare links provides greater fault

coverage than merely testing a link since all parts are exercised for longer periods of time.

Spare links are cycled at a rate commensurate with the desired fault detection latency and

the testing overhead.

To cycle a root link does not require any physical changes in the network. Only the identity

of the active root link is changed. However, to cycle a link between two nodes does require

a network reconfiguration. The node on one end is arbitrarily designated the spawning

node and the node on the other end is designated the target node. If this results in the

spawning node lying on a branch downline of the target node, their roles are reversed.

First, the link connecting the target node to the node adjacem to its inboard port is disabled

by commanding each node to disable the port corresponding to the link. (Since two nodes

have at most one link in common, this adjacent node is not the spawning node.) Next, the

configuration of the spawning node is modified so that the port adjacent to the target node

is enabled while its other ports retain their original configuration. The target node is then

67

reconfigured to enable the port adjacent to the spawning node. The four transactions which

cycle the spare link are executed in one chain, because the link switch must take place as an

atomic action on the network. Any one of these transactions alone would isolate some set

of nodes from the rest of the network.

When faults are identified in the network, the Network Manager sets up a new set of

transactions to cycle a spare link after every network reconfiguration. In the absence of

faults, after a spare link is cycled, the commands for the next cycle are set up. In order to

avoid a rotation between several links in the network which exclude some spare links from

the cycling process, an object called the Spare Link Cycling Log is created with one entry

for each link in the network. Whenever the network is grown or repaired, each entry is

given a value of untested if it is idle or tested if it is active or failed. As the cycling process

moves a spare link into active service, the corresponding log entry is marked tested. When

all the links are tested, the log is reinitialized as described above and the process repeats.

The spare links present at the start of a cycle are not in general the same set each time.

Although the Network Manager determines which link to cycle, sets up the necessary

transactions and processes the status and data returned by those transactions, it does not

execute the spare link chain. This is accomplished by the I/O Communication Manager

which runs a set of spare link chains in parallel in all the networks of an I/O Service when

time is available on that service. This does not require that the network be taken out of

service since the Network Manager does not use the network directly. The input/output data

for the spare link cycling chains is protected by a test and set locking protocol. When the

chain is complete, the I/O Communication Manager signals the Network Manager who then

analyzes the data and status produced by the chain. If errors are detected, the Network

Manager can set a flag which indicates whether or not the error can be repaired by restoring

the link that was last retired or whether the network needs to be regrown. When the I/O

Communication Manager detects the error, it signals the Network Manager to repair the

network. The Network Manager examines the value of this error flag before taking a repair

action

68

3.1.2.5ProcessName:

Inputs:

Outputs:

Requirements

Reference:

Restoring Repaired Network Hardware

I/O Network Identifier

Network Topology

Root Links

Active Root Link

Network Configuration

Network Status

Restore Record

Network Status

Network Configuration

I/O Network Functional Requirements,

Section 2.2

Notes: None.

Description:

The purpose of this process is to upgrade the status of a network component from failed to

either idle or active and, if necessary, to reconfigure the network to establish

communication with the parts of the network which were unreachable because of faults in

the component. The action taken by the Network Manager depends on whether the

restored component is a node or a link. Restoring a link does not require a network

reconfiguration; the status of the ports adjacent to the link are simply upgraded to idle.

Eventually, the operation of the link will be tested by Spare Link Cycling (3.I.2.4).

Restoring a node, however, does require network reconfiguration, since the node itself

must be reconnected to the active network. Furthermore, the node must be configured so

that network subscribers, DIUs and GPCs, adjacent to the node are reachable.

To restore a node, the Network Manager tries to establish a link to that node from some

active, adjacent node. The node to be restored is the target node and the adjacent node is

the spawning node. First, the status of all the ports on the target and of all ports adjacent to

the target are marked idle. Attempts to reconnect the node which produce errors result in

the status of the respective ports being marked failed. When a connection is established, the

status of the respective ports are marked active and the status of the node is marked active.

Finally, ports adjacent to DIUs and GPCs are enabled. If no errors are detected, the

conneciion is left in place; otherwise, the connection is disabled. The Network

Configuration and the Network Status are updated when the process is complete.

Network components are presently restored to service only upon the request of an operator.

This request is channeled through the I/O Communication Manager. If the component is a

69

node,thenetwork is takenout of serviceuntil the repair is complete since the Network

Manager uses the network to effect the repair. Once the repair is complete, the network is

put back in service. The repair iscomplete when the failed node is back online or when all

possible links to the node have been tried without success. If the component is a link, the

network is not taken out of service.

3.1.3 Network Manager Utility Operations

The purpose of this process is to provide the Network Manager with easy access to

frequently used operations. Two subprograms reconfigure the network, Enable Link and

Disconnect Link. Another subprogram takes care of updating the status of components

which are marked failed because they are adjacent to a failed node. A set of subprograms

format messages to nodes according to the node requirements described in Appendix D, the

Node Specification. A complementary subprogram converts the raw data in the node

response to a form more readily usable by the Network Manager. A final subprograms

generates a list of unreachable DIUs on a network for use by the I/O Communications

Manager. These are discussed in the following subsections.

70

3.1.3.1ProcessName:

lnpuls:

Enabling and Disabling Links

I/O Network Identifier

Network Topology

Active Root Link

Network Configuration

Target Node

Spawning Node

Target Port

Spawning Port

Contention Option

Maximum Retries

Outputs: Link Enabled

Requirements

Refwence:

I/O Network Functional Requirements,

Section 2.4.1

Notes: None.

Description:

The Enable Link subprogram tries to enable the link specified by the caller which connects

the spawning port of the spawning node to the target port of the target node. It returns a

boolean valued record which indicates whether or not the connection was established and if

not, the type of error detected. The caller also may specify the maximum number of times

to try to establish the connection if errors are detected and whether or not the chain to effect

this reconfiguration is conducted with contention. The default is one try. This subprogram

sets up configuration commands to the nodes by using the subprograms described in

section 3.1.3.2. Only one port in each node has its configuration changed by these

commands. The configuration of the other ports as specified in Network Configuration are

left unchanged while the target port and the spawning port are enabled. The command to

the spawning node is executed In'st. The subprogram called to execute this chain is

discussed in Section 3.1.4.1. This subprogram returns a configuration report describing

any errors detected during the execution of the chain.

The information in the error report is analyzed to determine whether or not the link is fully

operatioaal. A link which is enabled after an error is detected is exercised one more time

before it is considered active as a coarse filter for intermittent failures. If errors are detected,

retries are attempted up to the specified limit. If the link is operational, the link enabled flag

is set to true; otherwise it is set to false, and the cause of the last error is returned in the

field of the record reserved for that purpose.

71

Disconnecting a link is a simpler process. The configurations of the target port on the

target node and the spawning port on the spawning node are set to idleport. The

configuration of the other ports is left unchanged. Commands are set up as before but the

order of the transactions is reversed, the command to the target node preceeds the command

to the spawning node. Errors detected during the execution of this chain are not processed,

however, the spawning node is queried for status (with contention) after the target node is

disconnected. Errors on this test chain cause the attempt to disconnect this link to be

repeated. A flag is returned to the caller indicating whether or not the link is successfully

disabled.

72

3.1.3.2 Process Name: Formatting Node Messages

Inpuls: Configuration Lifetime

Node Address

Desired Port Configuration

Outputs: Formatted Node Message

Requirements

Reference:

• Node Specification,

Appendix D

Notes: None.

Description:

This process converts the logical commands which the Network Manager sends to nodes

into formatted messa, ges which the nodes can interpret. The format required by the node is

described in detail in Appendix D, the Node Specification. Since the underlying M680X0

based machine can operate most rapidly on data packaged as an integral multiple of an eight

bit byte, the Network.Manager uses objects represented in this way to specify information

in a node message in order to improve its performance. However, the message which the

node can interpret is densely packed; each bit represents an aspect of the command. This

design reduces the amount of data transmitted serially over the network, further improving

performance. For example the lifetime of a port enable command (for all future

transmissions or for one response only) is represented by a byte of data for the Network

Manager but by a bit within a byte of the node message. The additional memory used by

the Network Manager to support this approach is negligible.

The Network Manager sends two types of messages to nodes: a reconfiguration command

and a request for node status. Hence, this process provides two subprograms to generate

these messages. The inputs to the fast subprogram are the node address, the configuration

lifetime, and the desired port configuration. The second subprogram only requires the

address of the node which will receive the status command. The format of both messages is

the same. The subprograms copy the node address directly to the respective field of the

formatted message. They encode the address as required by the Node Specification. The

command they generate always requires the node to reply with a validresponse from its

status buffer, to clear the status registers after this response, and to transmit the response

with three residual bits. They also append the correct checksum value for the message as

required by the communication protocol for the system.

73

3.1.3.3ProcessName: Recording Status Changes for Failed Nodes

lnpuls: Network Topology

Failed Node

OutlmtS: Network Status

Requirements-

Reference:
I/O Network Functional Requirements,

Section 2.4.1, 2.4.3

Notes: None.

Descriplion*

This subprogram uses the Network Topology to identify the network components adjacent

to each port of the failed node and to update the status of those components accordingly. If

the adjacent element is a node, the status of the port adjacent to this node is marked failed.

If the adjacent element is a DIU, the status of the DIU is marked unreachable. If the

adjacent element is an FTP channel of the GPC hosting the Network Manager, the status of

the corresponding interface is marked failed IOS. Finally the status of each port in the
failed node and the status of the node itself is marked failed.

74

3.2.I/0 Sequencer Utilities

The lOS is a complex piece of hardware. The correct operation of the lOS is made possible

by making an accurate software image of its many parts and by providing software

functions and procedures to simplify the use of its many capabilities. The IOS must be

initialized before it becomes operational. Furthermore, during the initialization process, it is

tested to ensure.that is operating correctly. Finally, a set of subprograms is provided to

support the activities of the Network Manager. These subprograms execute chains and

analyze the error information provided by the lOS before passing data from the nodes to the

Network Manager. IOS initialization, testing and support for the Network Manager are the
functions of the software modules in this section.

3.2.1 Principles Of IOS Operation

In order to control the use of an IOS, a software bit for bit image of all its registers must

exist. Software templates will also be available to generate programs which the IOS will

use to execute chains. The primary function of the IOS is offloading the IOP from the low

level aspects of serial communications. It is therefore undesirable to reload the dual ported

memory with IOS programs and static data, i.e. data which does not change for each chain

execution since this takes IOP processing time. Hence, the dual ported memory is

organized to hold all necessary programs and dataused by the IOS. While a good deal of

information about the organization of dual portefl, memory is needed by the IOP software to

control the operation of the IOS, it is not desirable to flU memory with an exact image of

each IOS. This is not only wasteful but unnecessary since the various IOSs operate

identically, even though they may execute different programs. A quick and easy way of

accessing each IOS is to use a table of IOS/DPM pointers and a data type which reflects the

organization of the IOS/DPM memory space. Such a table eliminates the need to generate

these pointers in real time. Given that some irregularity in the way address bits may be

used, such a table is the only timely way of obtaining this information. Finally, some low

level IOS operations will be implemented as subprograms which are useful not only for

initialization but later during real time operation.

75

3.2.1.1ProcessName: IOSData Types

Inpuls: Not Applicable

.Outputs: Not Applicable

Requirements

Reference:

I/O Network Functional Requirements, Section 2.3.1;

lOS Specifications, Appendix C

Notes: The main purpose of this "process" is to provide type

templates for the easy manipulation of lOS registers and dual

ported memory.

Description:

This process is responsible for defining the software representation of lOS hardware

registers and type definitions for input/output data for node transactions which are stored in

the IOS DPM. The IOS specification lists seventeen registers which are accessible by the

IOP directly or which can be accessed by means of an IOS program. Of these, three are

not currently needed to correctly and fully use the IOS for network communications. These

are three registers belonging to the High Level Data Link Communications (HDLC) device:

the HDLC Address Register, the HDLC Receive Holding Register, and the HDLC

Transmit Holding Register. The Address Register contains the address that the device

would use for comparison if on-chip address recognition were being used. On-chip

address comparison is not being used, hence this register is not mapped into software.

Similarly, the HDLC Transmit and Receive Holding Registers axe not used directly since

the IOS has programmed instructions for transmission and reception of data. Two

registers, the Solicited Chain Pointer and the Unsolicited Chain Pointer, are sixteen bit

registers whose type is defined in IOS Access Types. The remaining eight bit register

types are defined and bit for bit specified here. They are the Chain Status Register, the

Interface Command Register, the Interface Status Register, the Timer Limit Register, the

Poll Address Register, the Poll-2 Register, the Time Register, the three HDLC Control

Registers, the I-IDLC Interrupt Register, and the HDLC Status Register. Memorandum

AIPS-86-32R in Appendix C gives the full specification of these registers. These register

types will be represented as bit mapped records. A field of the record which is only one bit

wide will be represented by a Boolean type. A field requiring more than one bit will be

represented by a specific type corresponding to that field.

This process will also generate byte wide templates for register values which wiii oe

needed at run time. Generating specific bit patterns on most microprocessors is a labor

intensive operation, requiring many machine instructions. Having frequently used

templates available will improve performance and readability of the code. The following

list is not exhaustive but indicates some of the templates that are needed.

76

Disable_.Timer
IOS_Poll_Addr(derived
from theGPCAddress)
Disable_HDLC
Set_Auto_Flag_Mode
Clear_Auto_Flag_Mode
Prime_lOS
Stop_lOS
Execute_With_Poll
Execute_Without_Poll
Clear_Chain_Status

TimerLimit Register
PollAddressRegister

HDLCControlRegister#1

HDLC Control Register #2

HDLC Control Register #2

Interface Command Register

Interface Command Register

Interface Command Register

Interface Command Register

Chain_Status_Register

Finally, this process will specify record types for input and output data used by the

network manager and test processes. These include a Chain Status Record for garnering

performance data about a given chain. This is data that is stored away by the IOS during

chain execution which can be used for future analysis. Also specified here are the Node

Input Record, with fields for the five bytes of data the IOS stores for every receive input

instruction it executes as well as the data from the node itself, and the Node Output Record,

with a byte count field, a data field, and a field for transmission status as recorded by the

HDLC device. The record for test data will be a compound record based on node input

and output records as needed for the IOS test process. Finally, a record describing

unsolicited input will be deffmed here. Unsolicited input on an I/O Network is an error

condition. This type is provided to support detection of this error by other processes.

77

3.2.1.2 ProcessName: lOS InstructionsandPrograms

Inputs: Not Applicable

Outtmls: Not Applicable

Requirements

Reference:

I/O Network Functional Requirements, Section 2.3.1;

lOS Specification, Appendix C

Notes:

Description:

This process is responsible for defining the software representation of 10S instructions and

for specifyingtypes which can be used as IOS program templates. In order to conduct

communications on an I/O network, the IOS follows a program which has bccn previously

storedforthatpurpose inthe IOS/DPM.

The program consists of an ordered set of instructions. The format of the instructions is

very specific and is described in detail in Appendix C. However, loading these instructions

into memory is under software control. For many applications, as long as a compiler uses

type templates in a consistent manner, the internal organization of RAM is not of general

interest. However, the correct bit for bit layout of IOS programs is crucial to the correct

operation of the lOS. Hence the internal organization IOS/DPM memory is different from

other RAM memories. The template used to control the internal organization of this

memory must be carefully spelled out for the compiler. For example, all IOS instructions

must begin on an even numbered address, i.e. a word boundary.

78

OPCODE OPERAND]
32 2423 1615

ADDRESS

0

opcodes: nop
output

unsolicited_input

solicited input

move immediate

move

branch

operand: 8 bit address of

IOS Register

Figure 16. IOS Instruction Format

There are seven basic IOS instructions: NOP, BRANCH, SOLICITED INPUT,

UNSOLICITED INPUT, OUTPUT, MOVE, and MOVE IMMEDIATE. The format of

these instructions is shown in Figure 16. Of these, only the NOP instruction requires no

operands. The next four instructions require a single word (16 bit) operand. The three

instructions dealing with input/output operations require the address of the data used by the

instruction. The BRANCH instruction requires the address of the next instruction. The

move operations have the most complex instruction formats. In addition to the sixteen bit

address of the location to which the data will be moved, they also require the byte long (

eight bit) address of the location whose contents are being moved or the absolute

(immediate) value which is to be moved. In the case of the MOVE instruction, only byte

long addresses can be moved. While this includes all readable registers, it does limit the

general versatility of this instruction. Hence, only register contents are moved this way.

To simplify use of these instructions and to generate readable code, a set of mnemonically

named constant instructions are defined in this process. Other processes can then use these

constants as necessary. This method is also more efficient in that no CPU time be given

over to assembling these templates at run time. However, this is not a major feature now

since all IOS programs are loaded into the DPM during initialization. If later modifications

require run time loading of IOS programs, this/eature will become a time saving payoff.

Two types of constant instructions are defined, those using MOVE and those using MOVE

IMMEDIATE. The MOVE instructions are defined as short instructions and specify a

79

particular registerto bemoved. It is assumedthat the destinationaddresswill vary and
thereforewill beaddedatinitialization time. Thustheseshortinstructionsareonly partof
an instruction, sincethey require an additional operandfor completion. The MOVE
IMMEDIATE instructionsarecompleteinstructionswhichgivea constantto bemovedand
a destinationaddress.Theseareusedto definefrequentlyusedoperations.Thefollowing
list of thesedefinitionsis notcomprehensive,but identifiessomeof theseinstructions.

short instructions defined as constants

read_csr

read_isr

read_sys_time

read_ir

read_st

full instructions defined as constants

stop_timer

enable_rex, r_only

enable_rcvr_and_xmitter

set__3_res_bits

set_auto_flag

start_chain_with_poU

While individual instructions are important, these instructions must be grouped together to

create useful IOS programs. To this end some program templates are defined in this

process. Other processes can use these program stubs to build larger IOS programs.

The program stubs which are defined here are a chain header, a node transaction, an army

of node transactions, an end of chain program, IOS idle program, and a node chain

program. A complete IOS program consists of a header, a chain of transactions, and an

end of chain routine.

The header is used to store some initial data about the chain such as the time and the initial

value of the HDLC status register and to initialize some IOS registers such as the poll

priority registers and the I-IDLC receiver. It also contains the instruction which causes the

IOS to poll for use of the network. The chain header ends by branching to the flu'st
transaction stub.

Each node transaction stub controls the execution of one I/O exchange with a node. It

waits the required bus quiet til_*,(_un'ently 256 microseconds), enables the HDLC auto

flag mode, sends an output frame, enables the timer to detect no response

conditions(currently the timeout value is 512 microseconds) and receives the node

response. Each transaction stub ends with a branch to the next stub. It is this resemblance

to a linked list that spawned the use of the name "chain" for the IOS program.

80

In order to stop the IOS chain execution, an end of chain program is necessary. This stops

the timer, disables the HDLC transmit and receive functions, stores some statistics, and

finally sends the IOS to its idle mode of operation where it executes the IOS idle program.

The last transaction in the chain branches to this end of chain program.

The IOS idle program is simply a way to have the IOS execute a program using the

unsolicited chain pointer as its program counter (PC) while it waits for a command to

execute a solicited chain. The later uses the solicited chain pointer as its program counter.

This takes advantage of the ability of the IOS to transition smoothly from one PC to the

other. The idle program is simply an infinite loop which executes an untimed unsolicited

input instruction, followed by a branch to this instruction. When a solicited chain is

ready, the transition from one PC to the other is effected by writing to the Interface

Command Register. The end of chain program terminates by writing a command to the

Interface Command Register to change PCs.

Although the DPM consists of random access memory, the program portion is relatively

static. Only the data portion, and then only dynamic data, will be rewritten either by the

IOP (for output packets) or the IOS (for input packets). Thus these programs are loaded

into the DPM at initialization time and do not need major modifications at run time. The

modifications which do need to be made will be discussed further in section 3.2.1.4.

3.2.1.3 Process Name: IOS Access Types

Inputs: I/O Network Identifier

lOS Identifier

Channel Selection

DPM Partition

Relative DPM Address

System Address

Long DPM Address

Outpuls: Long DPM Address

System Address

Relative DPM Address

Requirements

Reference:
I/O Network Functional Requirements, Section 2.3.1;

IOS Specification,Appendix C

81

Notes: The action of this process is necessitated by the way in which

address lines control access to devices in the LMN region of

memory. The IOS is a device in that region.

Description:

This process is responsible for mapping logical entities such as IOS identifiers and IOS

registers into physical address bits. IOS/DPM accesses are made by means of pointers.

The addressing scheme is fairly complicated. This process makes addresses for accessing

specific IOS/DPM pairs readily available so that this type of bit assignment does not need

to be done in real time.

A good deal of information about the behavior of read/write operations on an IOS/DPM is

encoded in the address used during the read/write access of this device. Figure 17 is

intended to help with this discussion. Each DPM currently has 8K bytes of storage.

Within a DPM, this memory is divided as follows. The fin'st 32 locations are specific IOS

hardware registers. In some cases there is further address decoding based on the value of

the read/write control line. The remaining 8,160 locations are dual ported RAM. One

unusual aspect of the IOS address space is that the actual address used to access a given

location in dual ported memory depends on the side originating the access. From the IOS

side of the DPM, the locations are accessed by thirteen bit addresses ranging from 0 to

1FFF16. The FTP is currently based on a Motorola M68010 microprocessor and the

address lines referred to in the following discussion are the M68010 address lines. Figure

17 will help with the following discussion. As one would expect, address lines A0 to A12

are decoded to designate one of these byte wide locations. However, when accessed from

the FTP side, the highest order address bit is not at A12 but rather at A15. Thus, from this

side, the DPM is effectively partitioned into two discontiguous regions. The lower 4K

bytes, including the IOS registers, are accessible when A15 has a value of zero; the upper

4K bytes are accessible when A15 has a value of one; decoding A0 to A11 selects one byte

within a given 4K region. To make use of this feature, the DPM has been divided into two

functional regions as well. The lower 4K are used to hold programs and data for the I/O

Network Manager while the upper 4K are used by the I/O Communications Manager for

user programs and data. Care must be taken when converting FTP addresses for use by

the IOS that the value of A15 is transferred to A12. This conversion is handled by a

function which takes a Long DPM Address and returns a Relative DPM Address for use in

the IOS programs which are stored in the DPM. This function copies the lower twelve bits

of the Long DPM Address to the lower twelve bits of a sixteen bit word. It then copies

A15 from the Long DPM Address to bit 13 of the word. Finally, it zeroes the upper three

bits of the word thus forming an address which occupies two bytes and can be used as an

operand in IOS instructions which require an address.

82

lOS Select

I
ABC Select

23 22 21 20 19 18 17 16 15 14 15 12 II 10 g 8 7 6 5 4

"1"' ' ' ' t
Region Peripl berul

Select LMN Select Address within lOS

$ 2 1 0

Figure 17. FTP Address Lines

From the FTP side, the remaining eleven address lines, A23 to A16 and A14 to A12, must

be decoded to select a particular IOS or set of IOSs. The function of address lines A23 and

A22 are very straight forward. When A23 has a value of one, the shared bus is selected.

When A22 has a value of zero the LMN region of the shared bus is selected. Since the IOS

is part of the LMN region of the shared bus, pointers to an IOS/DPM must conform to this

bit usage.

Within the LMN region, the address space of each FTP channel can support 24 IOS, as

shown in Figure 18. Selecting one of these 24 lOSs is controlled by address lines A21 to

A16. A21 to A19 are the peripheral select bits and they can take on any value from zero to

seven. A18 to A16 are the LMN bits and for an IOS exactly one of these bits must have a

value of one; the other two must be zero. Finally A14 to A12 are the ABC channel

selection bits. While the value of A23 to A16 select a particular IOS within each FTP

channel, the FTP channel or channels which will actually transfer data to its attached IOS

is determined by the ABC bits. To select a channel, the bit corresponding to that channel is

set. At least one of these bits must be set, but more than one can also be set. When one bit

is set, only that channel's selected IOS is accessed. When two or more ABC bits are set,

the selected IOS in each designated channel is accessed simultaneously within its respective

channel. While the address space itself will support twenty-four IOSs, the 1sack-plane is

presently capable of containing only two IOS boards. These will both reside in the L

region.

83

lOS 24
-- IOS 23

A -- :

= ios_

B ----

c :

Triplex FFP

0000

I

IFFF

Hardware Control
and Status

Registers

Network Manag_
10S Programs

mdD_

A_lication Users
Programs

and Dam

841OOO

84101F
841020

84!FFF Address

on
849000 FTP Bus

m,

w

849FFF

Figure 18. IOS/DPM Functional Memory Map

The ability to access corresponding lOSs in different FTP channels simultaneously can

afford some performance gains when working with networks with multiple root links. For

reliability considerations, these root links are always connected to different channels.

Furthermore, within their respective channels these root links are assigned to

corresponding lOSs (see Appendix B, Network Operating Rules). Although each IOS

operates independently, all the lOSs to a given network contain exactly the same set of

programs and outgoing data. Although only one IOS to a network is active at any given

time, the inactive or spare IOSs must be ready to take over network operation in the case of

a failure of the active IOS. But only the active IOS holds valid incoming data after

executing a chain of network transactions. Therefore, when writing data or programs for a

given network, all its IOSs are written to simultaneously. When reading data from a given

network, only the active IOS is read.

To support the features described above, read and write operations for the lOS will use

distinct pointers with the proper functionali_ encoded in the ABC selection field. If the bit

is set, data is transferred. Therefore, pointers used for writing data to an IOS/DPM will

have the bits set which correspond to all its root links. Only one write pointer value needs

to be generated. Pointers used to read data from an IOS/DPM have exactly one of the

ABC bits set. Thus, a read pointer for each root link in a network needs to be calculated.

lOSs are simplex devices which do not contain source congruent data. The issue of source

congruency of inputs and voting of outputs in order to mask errors needs some discussion.

When reading a given IOS, it is necessary to distribute the value read to all the FTP

channels by means of a data exchange in order to maintain source congruent data in all

84

FTP channels.The channel whose IOS will be read has the corresponding ABC bit set.

The actual distribution of the data to the various FTP channels is controlled by the LMN

data exchange default registers, which have previously been set up to perform a self to all

exchange. This is an implicit data exchange which does not require explicit use of the

transmit or receive data exchange registers. When writing data to the IOS, the value written

must be a voted value to avoid transferring bad data from one FTP channel to the network.

Voted values mask any errors from one channel. Since there is not an analogous implicit

data exchange mechanism available for write operations, writing a voted copy of data to the

IOS requires explicit use of the data exchange registers. This will be discussed in Section

3.2.1.5.

To represent all this functionality in software, a data type called Long DPM Address is

specified by this process. This type provides a bit for bit template of the IOS address

fields. Values generated from this template are then stored in a table which has separate

read and write entries for all the root links to the various networks connected to a given
GPC. This table will be described in more detail below.

The type Long DPM Address is represented as a record with each set of address lines

mapped to a specific field of the record. The fields of the record are: Bus, IOS,

DPM_Half, Channel, DPM_Address. The Bus field(two bits) is assigned a constant value

of 102, which designates the shared bus as described above. The six bit IOS field is used to

select one of twenty-four IOSs. To ensure that the IOS select field has a valid value, an

enumerated type is defined for this field with twenty-four possible literals. Each

enumeration literal within the type is then assigned a specific two digit octal value which

will decode as one IOS selection. To facilitate their use, these literals in turn are mapped to

the twenty-four valued logical IOS identifier type. For the present system, only two of

these twenty-four literals will actually map to physical IOS boards: 048 and 148. The low

order octal digit, 4, indicates that both IOSs are in the L region of the shared bus. The

upper or lower 4K of the DPM is represented as a bit wide Boolean valued field. Each

ABC bit is an element in a packed Boolean valued array. The array is indexed by the type

representing the logical identifier of the channel. The DPM_Address field is the eleven bit

address of one byte within a 4K DPM region.

During initialization, a table of DPM addresses is generated. Each network to which a

GPC is connected has an entry in this table. Each entry consists of two write address

values, one for each half of the DPM and two times R read address values, where R is the

number of root links to the network from the GPC. The write addresses are designed to

take advantage of the fact that root links to a given network must always come from

corresponding IOS selections in each channel and that there is at most one root link to a

network from a given channel as described above. Thus, it is possible to write programs

and data to all IOSs (i.e. root links) of a given network simultaneously. The read

addresses allow congruent copies of data from the active IOS in a network to be distributed

to all FTP channels implicitly, without the overhead of an explicit data exchange.

85

A sample entry in this table is shown below. This network has two root links, one from

channel A and one from channel B. It uses the IOS slot with peripheral select 0 from layer

L. Thus, its IOS select field is 048. Figure 19 shows a read access memory map of the

IOS in channel A.

POINTER FUNCTION CHANNEL LOWER DPM

ADDRESS

UPPER DPM

ADDRESS

Read Access A 841000 849000

Read Access B 842000 84A000

Write Access 843000All 84B000

Figure 19. IOS Read Access Memory Map

*ql,

86

3.2.1.4 Process Name:

lnimls:

IOS Dual Ported Memory Usage

DPM Pointer

Long DPM Address

I/O Network Identifier

Channel Number

Outoum Initialized IOS/DPM for Network Manager

Requirements

Reference:
I/O Network Functional Requirements, Section 2.3.1;

IOS Specification, Appendix C

Notes: None

Description:

This process is responsible for initializing the IOS/DPM for the network manager. A logical

organization of the IOS/DPM is superimposed on the physical memory space by defining a

record type, DPM_Record. A variable which is an access type to this record can be

assigned the base address of a specific dual ported memory. This base address can be

obtained from the table described in section 3.2.t.3.

The DPM_Record will have a specific field for each IOS control and status registers. Other

fields are defined to contain the following programs: a test program for the IOS, a status

collection program, a node reconfiguration program, an end of chain program, and an

idling program. Finally, the following fields are defined to hold data : chain status data,

data for the IOS test program, input/output data for the node stareS collection and node

reconfiguration programs, and a data field to trap unsolicited input. Using this record will

make logical, rather than absolute, references to fields of the IOS/DPM possible.

Furthermore, if the language supports the ability to obtain an address of a given field of a

record, this address can be processed to generate the corresponding address needed by the

IOS. For example, the thirty-two bit address used by the FTP to access a node output

packet can be converted to the sixteen bit address used as an operand by the IOS send

instruction, thus automating and simplifying the software needed to generate IOS

programs.

This process will provide subprograms to initialize the IOS/DPMs which are ceunected to

the host GPC. There are four steps in the initialization of an IOS for the I/O Network

Manager. The four steps are: IOS related hardware initialization, writing the IOS programs

to the DPM, writing static output packets for node status collection to the DPM, and

writing static output packets and clearing memory to hold input packets for the IOS test

program. Each of these will be considered in turn.

87

Hardware Initialization

The IOS hardware is initialized by writing to specific control registers. Values are written

to accomplish the following: stop and prime the IOS by writing to the Interface Command

Register(ICR), zero all non-register DPM memory, zero the Solicited Chain Pointer(SCR),

write the starting address of the idling program to the Unsolicited Chain Pointer (UCR),

disable the timer by writing to the Timer Limit Register(TLR), set the value of Poll

Register 1 to the IOS_PoU_Address, disable the autoflag mode of the HDLC by writing to

the HDLC Control Register #2 (CR2), disable both transmission and reception by the

HDLC by writing to the HDLC Control Register 1 (CR1). The initialization of the

hardware registers is performed simultaneously on all IOSs connecting this GPC to the

network. The subprogram performing this initialization is passed the pointer of the IOS or

set of IOS to be initialized. If there is a channel failure and recovery later in the lifetime of

the system, the pointer value passed to this routine will allow it to reinitialize only one
channel.

• 10S Programs

The DPM holds four programs for use by the I/O Network Manager and one test program

executed at power on. These programs are the end of chain program, the idling program,

the node chain programs, and the lOS test program. The end of chain program stops the

timer, disables transmission and reception by the HDLC, saves the value of the time byte

and the Chain Status Register (CSR) in the Chain Status data area, and writes a command

to the ICR indicating that an unsolicited chain should be executed. This causes the IOS to

begin executing instructions from the UCP which is pointing at the idling program. It also

causes the Chain Complete bit in the CSR to be set.

The idling program starts an unsolicited input instruction, pointing at the buffer used to

trap unsolicited input and then branches to itself. During this program the IOS is waiting

for unsolicited input which should of course never come. It really is idling, waiting for the

command to execute a solicited chain.

Each node chain program starts with a header and is followed by a linked list of

transactions. The header has instructions which save the value of the time, the HDLC

Interrupt Register (IR), and the HDLC Status Register (SR) in the Chain Status data area.

The header then has instructions to write to CR3 commanding the HDLC to use (and

expect) three residue bits per HDLC frame, to set the poll priority f-_r this chain (manager

chains are given the highest priority), to start a chain with a poll b_, writing to the ICR

(This is the default value; the status collection chain always starts with a poll, but the

reconfiguration chain may not.), and then branching to the f'trst transaction in the chain.

88

Each node transaction executes the same series of instructions. First the HDLC is

commanded to disable reception and transmission. Then the TLR is programmed to go off

in 256 microseconds followed by a solicited input instruction with the address of the

unsolicited input buffer. The effect of this combination of instructions is to produce a delay

of 256 microseconds. The network nodes need this much "quiet" time on the serial bus

between transactions for proper operation. Then the TLR is disabled. Next the HDLC is

commanded via CR2 to enable auto flag and via CR1 to enable its transmitter. Next a send

instruction is given with the address of the output packet belonging to this transaction as an

operand. A no_op instruction is required by the lOS following each send instruction.

Autoflag is then disabled (by writing to CR2) and the HDLC receiver is enabled while the

transmitter is disabled (by writing to CR1). Next the value of IR is copied to the

transmission status field of the output packet for this transaction for later processing. The

TLR is set to go off in 512 microseconds followed by a receive instruction whose operand

is the address of the input record associated with this transaction. The last instruction in a

transaction program is a branch instruction to the next transaction in the chain or to the end

of chain program.

The last program to be initialized is the IOS test program. The purpose of the test program

is to verify the proper operation of the IOS and its attached root node. It consists of a

header and two node transactions. It will be discussed in more detail in section 3.2.3.2.

The initialization of the lOS programs is performed simultaneously on all lOSs connecting

this GPC to the network. The subprogram performing this initialization is passed the

pointer of the lOS or set of lOSs to be initialized. If there is a channel failure and recovery

later in the lifetime of the system, the pointer value passed to this routine will allow it to

reinitialize only one channel.

Static Outnut Packets for Node Status Collection

Collecting status from network nodes is a periodic function. While there may be occasion

to deselect some of these transactions due to the failure of a node, the chain of transactions

used to collect node status is essentially static. To deselect a transaction from the chain, the

operand of the branch instruction which preceded the transaction in the list is modified to

point to the next transaction. This modification affects the program but not the data

associated with thetransaction. In the status coltection chain, each node in the network is

sent a command asking it to send back the contents of its status registers. Then a response

is awaited and,in the absence of faults, received under the direction of the program. This

command sent to the node never needs to be changed. Hence the output packets containing

the node command can be'written once at initialization time and never written again. In

contrast to this chain, the node reconfiguration chain has data packets which change each

time the chain is executed. Hence, theses output packets are not initialized except for the

byte count field. This field is always a fixed number for all node output packets and

writing it once at initialization does afford a small performance gain.

89

The initialization of the outputpacketsfor the nodestatuscollection chain is performed
simultaneouslyon all IOSs connecting this GPC to the network. The subprogram
performingthis initializationispassedthepointerof theIOSor setof IOSsto beinitialized.
It alsoneedsthenetworkidentifierof thenetworkwhoseIOSsarebeinginitialized soasto
beableto obtaininformationabouttheaddressesof thenodesin thenetwork. If thereis a
channelfailureandrecoverylater in the lifetime of the system, the pointer value passed to

this routine will allow it to reinitialize only one channel.

Static Ogg_g_, packets for the 10S Test Program.

The IOS test program also sends output packets, but only to the root node. Since this test is

only performed once at power on or system restart, its output packets are also static and

only need to be written once to the DPM. These output packets are directed to the root node

connected to each IOS.The test input records, like all node input records, contain the node

responses to the commands in the test output packets as well as status information about the

transaction which the IOS appends. Since this test is run at startup, these records can be

initialized here to a bit pattern which will be written over by the IOS when a valid node

response comes in.

Unlike the other data and programs described thus far, the data in the test output packets is

not identical in every IOS which connects this GPC with a given network. This is because

the output packets in the test program go to the root node only, and the root node from each

IOS has a unique address on the network. Thus, when writing all the programs and the

data for the node status collection chain, the DPM pointer which is used is the one which

allows simultaneous writing to all the IOS/DPMs connected to the network. The

subprogram which initializes the IOS test data packets needs to be passed the network

identifier and the channel number of the IOS which is being initialized.

90

3.2.1.5

Inputs:

Outputs:

Process Name: IOS Low Level Utilities

Byte Pointer

Byte Count

HDLC Status Register

Initial Poll Priority

Interface Command Register

Unvoted Byte

Valid Checksum Boolean

Residue Bit Count

lOS Instruction

Interface Status Register

Voted Byte

Requirements

Reference:

I/O Network Functional Requirements, Section 2.3.1;

Node Specification, Appendix D

Notes: None.

Desmption:

This process is responsible for providing users with some low level utility routines which

hide the complexity and detail associated with such routines. Five routines are provided.

They perform checksum verification, residue bit calculation, specialized IOS instruction

generation, register type conversion, and voting output data. Each will be discussed in turn

below.

Each input packet received by the IOS from a node has a checksum appended by the node.

A valid checksum has the following characteristic: when it is added to the sum of the

HDLC address, control fields and data fields in the packet the final sum modulo 256 is

zero. This serially transmitted data is copied by the IOS into contiguous locations in the

DPM. When the data is copied to onboard FTP memory, the data mapping is left intact. A

routine, Valid_Checksum, will return a boolean value of true if the input packet from the

node passes the above test and a boolean value of false otherwise. Since the data over

which the checksum is computed is located in contiguous memory, only the address of the

input packet and the number of bytes in the packet need to be passed as parameters to this

general purpose routine. Tc _avoid use of the rood operation which may require a time

consuming divide operation, each partial sum is compared to the modulus. If this partial

sum is greater than or equal to the modulus, the modulus value is subtracted from the total.

91

The HDLC protocol used for communication between a node and an IOS requires the

transmission of three additional bits after the data field of each frame. These are called

residual bits. After the reception of a frame, the HDLC Status Register value can be

examined for the number of residual bits transmitted. A subprogram is defined which

processes the Status Register value and returns the number of residual bits transmitted with

an input packet.

When an I/O Network is shared among several GPCs, it is called a regional network.

These GPCs contend for use of the network. The winner of a contention is determined on

the basis of a priority scheme. The priority which decides network access is based in part

on the priority of the message it wishes to send. This is a three bit field of Poll Register 2.

A subprogram is defined which converts the logical message priority into the correct byte

wide value to be written to Poll Register 2. When an IOS cannot win a poll, it will

increment this three bit field prior to engaging in another contention. This dynamic aspect

of message priority is intended to prevent the possible exclusion from the network of a

low priority message; it is completely under the control of the IOS and requires no software

intervention except for the loading of the initial value as an operand in the IOS program.

The Interface Status Register(ISR) and the Interface Command Register (ICR) occupy the

same address in memory. They are selected by means of the value of the read/write control

line. The former is read only and the later is write only. The DPM_Record format does

not allow this type of hardware representation. Since it is referenced more frequently, the

field has been designated as the ICR within the record. From the point of view of the

software, this is a read/write register. To interpret the value read correctly, the bit pattern

within the byte must be evaluated with a proper template. A subprogram which makes this

type conversion is provided by this process.

Within the physical memory of an FTP channel, there may exist a latent fault such that the

value stored in a given location is not congruent with the value stored in the same location

in the other FTP channels. If this channel were the host of the active root link of a network

and the faulty location held the value to be written to the IOS/DPM for transmission on the

network, the faulty value would be stored in the DPM and then be sent on the network with

possible adverse effects for the entire system. To guard against this problem, each byte of

data which is stored in the DPM is f'u'st subjected to a bit for bit majority vote among the

FTP channels. This voted value is then written to the DPM. This provides a high degree of

confidence in all output data. The checksum included in all output packets protects against

possible errors in the DPM itself. The checksum is calculated synchronously by each

channel of the b'TP on the local copy of the packet, voted across channels, and then written

to the DPM. W'aile the Frame Check Sequence (FCS) which the HDLC appends to

outgoing packets detects bit flips during the transmission of a message, the checksum

guards against errors that exist in the DPM itself. When a message which does not have a

valid checksum or a valid FCS is sent to a node, it is not processed by the node. Thus the

voting of outputs masks faults originating in FTP memory, the FCS detects errors during

92

transmission,and the checksum covers faults which may exist in the IOS/DPM. A

function which takes a byte from memory, subjects it to a bit for bit majority vote by

sending it through the data exchange mechanism, and writes the voted value to the DPM is

provided by this process.

93

3.2.2 ProcessName: IOSInitialization

Inputs:

Outputs:

Channel Identifier

Reinitialized lOS

Initialization of Every lOS

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.3.1

Notes: None.

Description:

This process is responsible for coordinating the initialization and test of every IOS which is

connected to a GPC. This takes place during system startup. If GPC FDIR determines that

an FrP channel is failed due to a transient fault, it will bring that channel back online. This

process is responsible for reinitializing the IOSs attached to the FTP channel after such a

re.configuration.

The test and initialization sequence is performed on each network connected to the GPC. It

proceeds as follows:

1) the IOS Simple Response Test is performe d (3.2.3.1)

2) the Address Line Test is performed (3.2.3.1)

3) the IOS Registers are initialized (3.2.1.4)

4) the IOS/DPM is loaded with programs and data for the I/O Network Manager

(3.2.1.4)

5) the Correct IOS Operation Test is performed (3.2.3.2)

6) the Interface Status is written to I/O Network Status (3.4.1)

The reinitialization of an IOS is accomplished by means of the following sequence of steps:

1) the IOS Registers are initialized (3.2.1.4)

2) the IOS/DPM is loaded with programs and data for the I/O Network Manager

(3.2.1.4)

3) the I/O Network Manger programs and data are updated (3.2.4.3)

94 f' - c¢.--

3.2.3 IOS Testing

This process is responsible for determining whether or not the IOS hardware which is

connected to a GPC is functioning properly. The tests cover the operation of the IOS, the

DPM memory, and the root node connected to the IOS. If any faults are detected in this

hardware, the information is logged in the IOS Error Log and the status of the network to

which this IOS belongs is updated by marking the corresponding interface status as

Failed_IOS or Failed_Channel, whichever is appropriate.

3.2.3.1 Process Name: DPM Memory Tests

Inpuls: I/O Network Identifier

Channel Number

Starting Address of DPM Memory Block

Ending Address of DPM Memory Block
Network Interface Status

Channel Identifier

Outptas: Network Interface Status

Results of DPM Word Test

Results of DPM Block Test

Results of DPM Memory Tests

Results of Channel OK Test

Requirements

Reference:

I/O Network Functional Requirements, Section 2.3.1;

IOS Specification, Appendix C

Notes:

Description:

None.

This process is responsible for testing the Dual Ported Memory (DPM) associated with

each IOS connected to a GPC. Some of the tests are conducted at system startup and others

axe conducted during normal operations.

The three tests conducted at startup verify that the IOS/DPM board is plugged into the

backplane, that the hardware address lines are connected correctly and are fully operational,

and also that the individual memory devices can pass read/write pattern tests. Of those tests

conducted during normal operations, two are used as a diagnostic tool to further isolate the

cause of an error after the error has been detected by other software and one is used as a

routine diagnostic procedure, checking for latent DPM memory faults. The two tests used

to further isolate detected faults determine whether or not a particular FTP channel is still

95

synchronizedwith theotherchannelsandwhetherablock of DPM memoryhasfailed such
thatit cannotpassaread/writepatterntest.

Eachof the tests conducted at startup is conducted by a specific subprogram which tests all

the hardware associated with a particular network. However, all the subprograms have

certain operational features in common. One common feature is the use made of FTP

channel stamtus information available from the GPC FDIR process and similar information

obtained from the channel failure detection subprogram provided by this process itself. If

an FTP channel is failed, the memory tests conducted on the IOS/DPMs connected to that

channel will appear to fail. Thus, prior to conducting any memory tests, the FTP channel

status is evaluated. If the channel is failed, the interface status of the IOS is marked

Failed_Channel and this information is logged. Similarly, at the conclusion of any test, if

errors were detected, FTP channel status is again evaluated. If the channel failed during the

test, thereby resulting in a false diagnosis of the cause of the error, the interface status is

updated to reflect the true cause of the error and this information is logged. Another

common feature among the three startup memory tests is the way in which pointers are

used to access the DPM. Whenever values need to be written to the DPM, a pointer value

accessing all the DPMs connected to the network is used. However, whenever values need

to be read from the DPM, a pointer value accessing only one DPM is used. These pointer

values are obtained from the IOS/DPM Memory process. To expedite the testing process,

the cumulative result of these tests is passed as a parameter to each subprogram. Thus, if a

DPM has failed a previous test, the current test will not be conducted. For example, a

DPM which has failed the address line test will have its status marked Failed_IOS and

therefore the read/write pattern test for that DPM will not be conducted. Similarly,

whenever a test detects a fault, the test underway is deemed complete; further testing for

that particular fault condition is not necessary. The purpose of the tests is to closely

identify a fault for maintenance purposes, but not to provide a comprehensive diagnosis of

the nature of the fault. For example, the test will diagnose a failed DPM memory device,

but it will not identify all the memory locations in the device which may have failed.

The f'u'st of the startup DPM memory tests is used to verify the presence of the IOS/DPM

board in the backplane. Using a pointer which accesses all the IOSs in the network whose

identifier is passed as an input parameter, this test writes a pattern to the solicited chain

pointer of the IOS. The values are then read back one at a time using a read access pointer.

If the pattern read does not match the pattern written, the IOS is deemed unreachable by the

FTP. The error is logged, and the interface status of the IOS is marked Failed_IOS. If the

pattern does match, no log entries are made and the interface status is not changed.

The second startup DPM memory test determines if the address lines to the IOS/DPM are

wired correctly. The test is only performed if at least one of the IOSs belonging to the

network whose identifier is passed as an input parameter still has an idle, i.e. non-failed,

interface status. The interface status is passed as an input/output parameter. Using the

write access pointer obtained from the IOS/DPM Memory process, a value based on the

96

lower twelvebitsof theaddress of each location is written to the DPM. This pattern is then

read back on a channel by channel basis and verified. The test is then repeated using a

pattern in which the upper and lower bytes of the previous pattern are inverted. This

switch is necessary since certain address line errors would not be detected otherwise. Each

of the lower twelve address lines decodes as one DPM location which can only hold eight

bits of information. Thus, after the pattern has been written, some locations will contain

the same bit pattern. The fn'st pass uncovers errors in the lower eight address lines and the

second pass in the upper four address lines. Errors in higher order address, i.e. fines

twenty-four to thirteen, lines will be uncovered by the first pass. If the pattern read does

not match the pattern written, the IOS is deemed to have an address line error. As in the

previous test, the error is logged, and the interface status of the IOS is marked Failed_IOS.

If the pattern does match, no log entries are made and the interface status is not changed.

The last DPM memory test is the read/write pattern test. In this test each IOS connected to

the specified network is tested in turn. A pattern is written to one location and then read

back. If the value read matches the value written, the next location is tested. If an error is

detected, the interface status of this IOS marked Failed_IOS, the information is logged and

the process is repeated with the next IOS/DPM in the network. For completeness, two

patterns need to be used, one being the bitwise complement of the other. This will ensure

that each bit in the memory can hold a value of one and as well as a value of zero.

The first of the two diagnostic tests used to further analyze other test results is the test

which performs a read/write pattern test on a block of DPM memory. In this test tl/e

starting and ending addresses of the block are provided to the subprogram. No checks for

channel failure are performed here. Also, this test is only conducted on one DPM at a time,

the one selected by the starting and ending addresses. This test is used whenever other

fault detection indicators give a positive result but the possibility of a channel failure is

already ruled out. If no errors are detected in the designated block of memory, an

indication that the test was passed is returned to the caller, otherwise an indication that the

test was failed is returned.

The second of these tests is one which is used to detect an FTP channel failure. This test is

accomplished by performing a From_X exchange on the channel under test, where X is A,

B, or C. The From X exchange causes a value to be written to the transmit register of the

data exchange hardware. While all channels write to their respective transmit registers,

only the copy from channel X is allowed to proceed to the receive registers in each channel.

This exchanged value is then read back from the receive register and compared with the

outgoing value. If the values do not agree, a channel failure is likely and an indication of

this result is returned to the caller of this subprogram. Otherwise, an indication of no

channel failure is returned. For this test to work, the data exchange hardware must be

functioning properly and all channels must be operating synchronously. The purpose of

this test is not to analyze this error since that analysis is the responsibility of GPC FDIR.

Rather, this function provides a quick check as to the state of the FTP channel connected to

97

an IOS.Therearetwo main uses for this test. The f'n'st is to detect a channel failure before

an IOS connected to that channel is used to execute chains which access I/O devices on a

network. In the presence of such a failure, another IOS connected to the same network

through a different FTP channel must be used since only the channel directly connected to

the IOS can control the IOS. Detecting this condition early saves time, since such a failure

will always result in the detection of errors in the I/O chain. These errors must then be

processed and the chain repeated. AU this unnecessary overhead can be avoided by the use

of this test. The second use of this function is to help in the analysis of the cause of an

error, once that error is detected by other means. Thus, if data read back from a

transaction to a node indicates a checksum error, this fault could be due to the node itself,

to the IOS/DPM memory location in which the checksum was stored, or to the failure of the

FTP at the time the checksum value was read from the DPM to the FTP RAM. (Bit flips

during transmission are screened for earlier in the logic chain and therefore are already

ruled out as a cause.) Use of the two diagnostic tests described so far isolates the problem

to one of these three causes.

The last diagnostic test is provided to allow background testing of the IOS/DPM when time

for such a contingency function is available. Each word in the DPM memory is tested in

turn, a new word with each call to the subprogram which executes the test. The network

identifier and the channel number which uniquely identify the IOS/DPM to be tested are

passed as parameters to this subprogram which conducts a read/write pattern test on the

next location in the DPM memory. If the test fails, this restflt is logged and an indication of

this result is returned to the caller. If the test is passed, an indication of this result is
returned to the caller.

98

3.2.3.2 Process Name: Tests for Correct IOS Operation

Inputs: I/O Network Identifier

Network Interface Status

Outptas: Network Interface Status

Requirements

Reference:

I/O Network Functional Requirements, Section 2.3.1;

lOS Specification, Appendix C;

Node Specification, Appendix D

Notes: None.

Description:

This process is responsible for testing the proper functionality of each root link connected

to a GPC. The root link consists of the IOS and the root node. These tests are conducted at

system startup. The test is conducted by executing a program from the IOS which sends

commands to the root node. The results of the program are then analyzed to determine if

the resuks indicate a fully operational IOS and root node. The IOS functions which are

tested include its polling capability, mode switching capability, timeout operation, ability to

transmit and receive data, status and control register operation, and its overall capability to

execute a chain, i.e. execute its instructions correctly. The node functions which are tested

in the root node are its ability to disable its root port, to return its status only from an

enabled port, to respond to reconfiguration commands and to reconfigure itself for one

•transaction only.

The test is performed on one IOS in a network at a time. The following sequence of events

prepares the IOS for the actual test execution. The ICR is commanded to stop; this is an

effective reset of the IOS. A chain is then executed without conducting a poll which sends

one reconfiguration command to the root node instructing it to disable all its ports. This

chain is intended to isolate the root link from the rest of the network so that potential

problems on the network cannot disrupt the tests.

The test itself consists of a program which has a header and two node transactions, both

directed to the root node. The header causes a poll to be conducted. The first transaction

commands the node to disable all of its ports. The second transaction commands the root

node to enableits root port only once, for the response to this command. The program

concludes by moving a command to the iCR to cause a transition from solicited to

unsolicited mode.

99

If the interfacestatusof the IOS under test is still idle (i.e. other tests have not detected any

errors) and GPC FDIR has not detected any faults in the channel to which the IOS is

connected, the test will proceed. The starting address of the test program is written to the

solicited chain pointer and the ICR is commanded to start executing a solicited chain. This

process then waits for the chain to complete; a delay of ten milliseconds is adequate.

After the delay, IOS status registers and the transaction status and data are read and stored

in FTP RAM for further analysis. A second check for the health of the FTP channel is

made. If the channel connected to the IOS failed during the test, no further analysis is

performed and the interface status is marked Failed_Channel. Otherwise, the analysis

proceeds starting with the IOS status registers, followed by the transaction status and

finally the data returned by the root node. The IOS status registers are scanned to see if any

errors were detected which would result in the interface status of the IOS being marked

Failed_IOS. When an error is detected, it is logged to the Network Error Log and the rest

of the analysis is not performed. First, the value of the CSR is analyzed. The chain

complete bit should be set. If it is not, the IOS is marked Failed_IOS since this error

implies either an IOS which cannot switch modes (from solicited to unsolicited), a problem

with the TLR in aborting a solicited input command which has timed out, or a root node

which cannot be disabled and is allowing a coherent babbler to be heard by the IOS. The

other fields of the CSR should hold their reset values. The ISR is examined to detect a

stuck on high condition of the network bus, another Failed_IOS condition. The value of

the CSR prior to the mode switch is called the final CSR. It also has error detection

information. Its value should reflect: network possession by this GPC, no possession

default (a poll detected during this chain execution), no data transmission faults (an

incoming message detected during a message transmission) and no poll transmission faults

(data transmission detected during the conduct of the poll). Errors detected here result in

the network interface status being marked Failed _IOS.

After analyzing the IOS status registers, status and data from the two node transactions are

analyzed. The status is appended by the IOS when the solicited input instruction is

executed; the data is the message returned by the node. The first test transaction

commanded the node to disable all its ports. Thus, no reply to this transaction should have

been received. The instructions controlling this transaction programmed the TLR to move

to the next instruction if no input is received within 512 microseconds. Proper execution

of the solicited input instruction involves zeroing the byte count field of the transaction

status. A non-zero value is written to this field as part of the IOS/DPM initialization. A

delay of approximately 512 microseconds (measured by reading and saving the time

register immediately before and after the solicited input instruction) and a zero byte count is

evidence that these x_e operations are functioning properly. Also the status of the FIDLC

device is stored after the outgoing message is transmitted. It should indicate no
transmission errors were detected.

100

The second test transaction commands the node to enable its root port for its response to

this transaction only. (The node is left with all ports disabled until the network manager

begins execution.) Each status field is analyzed for error indicators. The HDLC SR

should indicate no transmission errors after sending the node command. The byte count

field should have a value of 0F16. The HDLC IR should indicate no HDLC protocol

errors were detected while receiving the node response. The HDLC SR should indicate

that the message from the node had three residual bits. The checksum is validated by

calling a subprogram from IOS Utilities. Finally, the address transmitted by the root node

is verified as being correct.

101

3.2.4 IOSUtilities For I/O NetworkManagers

I/O NetworkManagershavetwo basicobjectiveswhencommunicatingwith thenodesin
thenetwork: statuscollection andreconfiguration.During statuscollection,eachnodein
thenetworkis commandedto sendbackthedatawhichhasbeenstoredin thenode'sstatus
registers. Reconfigurationis the processby which a node is given the particular port
enablepatternit must maintainuntil the next.reconfigurationcommandis received. In
order to achievetheseobjectives, the I/O Network Managermust have accessto the
servicesof theIOS sinceboth statuscollection andreconfigurationareaccomplishedby
meansof lOS programs,alsoreferredto as chains.This processprovidestheI/O Network
Managerwith thecapabilityto executeandmanagechainsonan I/O network. It provides
this servicethroughasimpleinterfacewhichconcealsall of thedetailsof theIOShardware
interfacefrom theNetworkManager.

Statuscollectionis theprimary meansby which a Network Managerdetermineswhether
or not anyfaults arepresentin the network. Although the data returned by the nodes is

useful in the analysis of errors, the absence of an expected response and the condition of

the bus itself are also very useful diagnostic tools. Collecting node status, i.e. eliciting a

response from each non-failed node in the network, is accomplished by means of a status

collection program or chain. This chain does not change unless a node failure is detected.

The chain is fixed or static in two ways. The program executed by the IOS when running

the chain does not change and the data sent to each node during the chain execution does

not change. When a node is failed, it is no longer queried for its status. A failed node is

isolated from the network, hence it will not even receive the command asking for its status.

Therefore, the transaction which was initially sent to the node is removed from the Chain.

This process is called transaction deselection and is accomplished by modifying the status

collection program. Similarly, if a node is brought back on line, the transaction which

collects its status is returned to the status collection chain or selected again. To support

status collection, this process provides the Network Manager with the ability to run a status

collection chain, to select a status transaction, to deselect a status transaction, and to update

a status chain in the IOS of a recovered FTP channel.

Reconfiguration chains are not static because the number of transactions in the chain varies

with the type of reconfiguration the manager is trying to effect. Furthermore, the data sent

to the nodes which are being reconfigured is intrinsically dynamic: the configuration of

each node is determined as a network is grown or repaired and is not known a priori. This

process provides the Network Manager with the capability to execute reconfiguration

chains where both the number of transaction_ and the data sent to each node is specified by

the manager at the time the service is called. '_-

While carrying out its principle function of sending and receiving data, the IOS is designed

to detect various error conditions on the network. Some detectable error conditions

concern the network as a whole, some concern the IOS, and some concern the individual

102

node transactions. Whenever a chain is executed for an I/O Network Manager, this

information will be analyzed to the extent possible. This analysis in turn is returned to the

Network Manager who uses it as the basis of further analysis and of its reconfiguration

strategy.

In general, if this process detects an error when executing chains for the Network Manager,

it will log the error and any pertinent error information in the I/O Network Error Log.

However, the Network Manager may execute chains containing transactions intended to

produce an error symptom. Thus, this process will give the Network Manager the option of

conducting chains without logging detected errors. Finally, this process will provide the

Network Manager a means of testing the network for the presence of a babbler without

having to execute either a status collection or recordiguration chain.

103

3.2.4.1ProcessName: Executionof Node Reconfiguration Chains

Inputs: I/O Network Identifier

Active Root Link

Configuration Commands

Contention Option

Logging Enable

Outpuls: Configuration Report

Requiren'_ts

Reference:

I10 Network Functional Requirements,

Section 2.3.1, 2.4.2

Notes: None.

Description:

This process is responsible for executing chains for the Network Manager of the network

specified by the I/O Network Identifier. It is assumed that the purpose of these chains is to

reconfigure the network, however, the Network Manager may use this process to conduct

I/O transactions for any purpose it deems necessary. These chains differ from other I/O

chains in the system in two respects: the number of transactions in the chain is not constant

and the chain may not always be conducted with contention. The number of transactions in

the chain depends upon the type of reconfiguration the Network Manager is trying to effect.

For example, if the root node is being reconfigured, only one transaction will be in the

chain. If a link between two nodes is being enabled, then two transactions will be in the

chain. The number of transactions is bounded only by the number of nodes in the

network. The Network Manager has the option of running chains either with or without

contention for the network. In general, contention is used even for chains run on local or

dedicated networks, where contention for the use of the network is not necessary, since

some valuable diagnostic information about the state of the network can be obtained in this

way. However, when certain fault conditions are present in the network, it may not be

possible to win a contention. Thus, to force the chain to be executed, the Network Manager

can request that the chain be executed without contention. This process is responsible for

conducting the chain as specified by the Manager in the Contention Option.

In order to invoke this process, the Network Manager must supply an ordered list of

commands to be sent to nodes in the network. These Configuration Commands contain

data in the proper format which is to be sent to the nodes as part of this chain.

This process is divided into two main functions: chain execution and error analysis. The

result of the error analysis is returned to the Network Manager as a Configuration Report.

The Configuration Report informs the Manager about the outcome of the attempt to execute

104

this chain. The report takes the form of a discriminated record. One field of the record

indicates whether or not an interface failure was detected when executing this chain, and if

there has been, whether it is due to a failed FTP channel or failed IOS hardware. When no

interface failure is detected, another field indicates whether or not a babbler has been

detected during the execution of this chain, and if there has been, whether not it was

detected during contention for the network or during data transmission. When neither a

failed interface nor a babbler is detected, the last field contains status and data resulting

from the conduct of each transaction in the chain. The status information states whether or

not any communication protocol errors were detected during this transaction. When no

errors are detected, the data returned by the node is also returned to the Network Manager.

Chain execution begins by checking with GPC FDIR as to the status of the FTP channel to

which the Active Root Link is connected. If the channel is okay, chain execution will

continue, otherwise the report returned to the Manager indicates a channel failure.

Next, the program which will execute this chain is tailored to meet the requirements of this

chain as specified by the Network Manager. It is by this means that the Manager's

perogatives over contention and the number of transactions are implemented. First, the

IOS instruction which controls the type of contention used for this chain is generated. If

the Contention Option asks for no contention, the instruction will simply be given a value

of No-op. If the Contention Option indicates contention is required and the network is

local (i.e. dedicated to use by one GPC), an instruction is generated which moves a

command to the ICR to cause a poll to start immediately. In the case where a network is

regional and contention is required, the command indicates a normal polling sequence is to

be used. Different polling sequences are used because the immediate p011 takes less time to

complete than a full polling sequence. Polls are conducted on local networks for error

detection only and therefore a performance gain is obtained by using the immediate poll.

However, on regional networks the full contention protocol must be followed since the poll

also determines which GPC will have control of the I/O network. The second step in

tailoring the program is to write the address of the end of chain program to the operand

field of the branch instruction of the last transaction in this chain. The original value of the

operand field is saved so that it can be restored after the chain is complete. In this way, the

number of transactions in the chain can be varied from a minimum of one to a maximum

equal to the number of nodes in the network.

Next, the input and output records for this chain are initialized. The output records receive

the voted value of the commands as given by the Network Manager. A non-zero bit pattern

is written to the fields of the input record.

To cause the IOS to execute the chain, the address of this chain is written to the Solicited

Chain Pointer and the command to start the chain is written to the ICR. This process then

waits for a specified amount of time before proceeding. The amount of time depends on

the number of transactions in the chain. Presently, the value of the timeout is one

105

millisecondper transactionplus oneadditional millisecond for miscellaneousoverhead
(suchasthetime to completeacontention).Thewait maybeaccomplishedasa busywait
or asarequestto the operatingsystemto suspendthis process.The busywait alternative
shouldbechosenwhenthevalueof thetimeoutis closeto theamountof time requiredto
performaprocessswitch. In this case,thesystemdoesnotperformusefulwork while this
processis suspended;however, chain completion will be detectedimmediately thus
providingthemanagerwith aperformancegain. Thef'malstepin chainexecutionis to read
thedataandstatusinformationproducedby the chainfrom theIOS/DPM into local FTP
memoryusingtheimplicit dataexchangemechanismof theLMN regionto maintainsource
congruencyin all channels.

The second part of this process is error analysis. This begins by verifying that the channel

connected to the IOS conducting this chain has not failed during chain execution. There are

two parts to this diagnostic procedure: a data exchange pattern test and a call to GPC FDIR.

Since GPC FDIR is a periodic process, a small amount of time may elapse between the

failure of a channel and its detection by FDIR. The data exchange pattern test is used to

detect a failed channel which GPC FDIR has not yet uncovered. If the channel with the

active root link has failed, non-failed channels will obtain invalid data from its IOS/DPM.

This data should not be processed since it could result in erroneous conclusions about the

network. Similarly, if the channel failed after the last check with GPC FDIR (before the

chain data was loaded into the DPM) but the failed channel has been resynchronized by

GPC FDIR, then the data exchange pattern test will show no errors but again the chain data

should not be processed since it may be invalid. To prevent this situation from occurring, a

call is made to GPC FDIR. When a channel has failed and then been restored, GPC FDIR

will not report its status as okay until it has undergone a trial period in a resynchronized

state. This period is much longer than the longest chain delay. This means that errors

resulting from a channel which failed before voted data was written to the DPM and which

is now functionally resynchronized are still correctly attributed to the failed channel. The

way in which checks are performed on the status of the channel which interfaces to the

active IOS creates a window of time during which it is possible to detemaine whether or not

the channel has failed. This test is important because use of invalid data could result in

erroneous conclusions being drawn about failures in the network. Thus, this process is

protected from using invalid data due to a failed channel. If the channel is okay, the error

analysis will proceed, otherwise a log entry is made and a report indicating a failed channel

is returned to the Network Manager.

The need to have this window of time during which a channel failure is known not to have

occurred also drives the sequence of steps followed in reading and analyzing the data from

the IOS/DPM. Thus all the data is read from the IOS/DPM before error processing is

started, rather than a sequence where part of the data is read and analyzed and if no errors

are detected, more data is read. After each section of code used to transfer data from the

IOS/DPM to local memory, it is necessary to verify that the channel connected to the IOS

has not failed. Since errors are relatively infrequent occurrences, the simplicity and speed

106

of the read and process method is preferred even though it may occasionally result in

reading data that is later discarded because detection of errors has made it suspect. This

sequence provides the greatest performance benefit for the most common behavior of the

system. It should also be noted that log entries are only made by this process if the value of

the Logging Enabled parameter indicates that log entries are to be made whenever errors are

detected.

When no channel failures are detected, error analysis proceeds on the data which was

copied from the IOS/DPM and exchanged across all channels of the FTP. If the value of the

Chain Status Register (CSR) indicates that the chain did not complete in the allotted time, a

command is written to the Interface Command register (ICR) to stop the IOS in case it is

still executing a chain or has failed in such a way that is is in an infinite loop and possibly

babbling on the network. A check is then made of other error indicators to determine if an

incoming babbler was detected or if the IOS has failed. The indicators that are examined

are the contention state of the IOS and the possession default indicator in the CSR if the

chain was executed with contention, the extent to which the chain did complete as indicated

by the value of the solicited chain pointer, the extent to which the IOS correctly performed

its byte count zeroing function when executing a receive input instruction, and the ability of

the DPM to pass a read/write pattern test. When a chain does not complete, the CSR is not

reset. Therefore, the value used in the above analysis is the value last read from the CSR.

If errors are detected, a log entry is made and the type of error is returned to the Network

Manager. Otherwise, the error analysis will proceed with a check for a babbler condition if

the chain did complete.

When a chain completes, the value in the CSR is reset, thus the analysis to determine

whether or not a babbler is present in the network is performed on the final value of the

CSR which is saved by the end of chain program prior to commanding the ICR to switch

modes (the definition of chain completion is a switch from the solicited to the unsolicited

mode of operation). The final value of the CSR is examined for an indication of data

transmission on the network while an output instruction is being executed by this IOS.

Furthermore, if the chain is conducted with contention, the final CSR is examined for

indications that data was transmitted on the network during the polling sequence or that a

polling sequence was attempted during data transmission by this IOS. Any of these three

protocol violations are assumed to be evidence of a babbler on the network. If any of these

errors are detected, a read/write pattern test is performed on the DPM to ensure that the

error is due to a babbler and not a failed DPM. If the results of this analysi s indicate the

detection of an error, a log entry is made and the error type is returned to the Network

Manager. Otherwise, the error analysis will proceed to examine the data in the Interface

Status Register (ISR) and to verify that the CSR has been reset.

If the CSR has not been reset, the error is logged and the error report to the Network

Manager will indicate a failed IOS. Otherwise, the ISR is examined for the presence of a

stuck-on-high condition of the network. If this condition is detected, an entry is made to

107

the error log and the report returnedto the Network Manager indicates a failed IOS.
Otherwise,thestatusinformationfrom eachnodetransactionis analyzed.

The statusinformation from eachnodetransactionis examinedfor error information as
follows. TheHDLC status,which is savedafter the transmissionof thecommandto the
node, indicates whether or not any framing or overrun errors occurred during the
transmission.If this erroris detected,theIOSis consideredfailed; a log entry is madeand
thereporttotheNetworkManagerindicatesafailed IOS.If thebytecountkeptby theIOS
on thedatareturnedby thenodestill hasits initial (non-zero)value,theIOS is considered
failed. Thisvalue shouldbeavaluefrom zeroto fifteen. Fifteenis thecorrectbytecount,
zero indicatesno responseis received from this node and any value in betweenis an
incompletetransmissionfrom thenode.The IOS whenoperatingcorrectly will zero this
bytecountandthenstartto incrementit asdatais receivedfrom thenode.Whentheinitial
value hasnot beenwritten over by the IOS, it is assumedthat theIOS is not operating
correctly. This error results in a log entry being madeand the report to the Network
ManagerindicatesafailedIOSconditionwasdetected.

In the caseswherethe error is attributedto a failed IOS, no further error processingis
performed. However, some errors are attributed not to the IOS but instead to the
transaction,i.e. the node,whosestatusis being analyzed.When errorsattributable to a
node are detected,the error analysisproceedsto examine the statusof the remaining
transactionsin thechain.Thus,if thebytecounthasanyothervalueexceptthecorrectbyte
count of fifteen, the error is attributed to the transactionitself and not to the IOS. In
particular,if the byte countis zero, thenno responsewasreceivedfrom this node. This
errorconditionis loggedandthereportreturnedto theNetwork Managerwill indicatethat
thetransactionto thisnodehadanerror.Thestatusof eachtransactionis thenexaminedfor
thepresenceof HDLC protocolerrors,thetransmissionby thenodeof anincorrectnumber
of residualbitsandaninvalid sumcheckappendedto themessage.Thedetectionof anyof
theseerrorsresultsin a log entrybeingmadeandanerror indicationbeingscoredagainst
that transaction. Should any of theseerrors be detected,a read/write pattern test is
performedontheDPM to besurethattheerroris notattributableto afailed DPM memory.
A failed memoryresultsin aan error report to theNetwork Managerindicating a failed
IOS. If thememory test indicatesthat the memoryis okay, theerror reportwill indicate
which individual transactionshad an error. When a transactionhas no errors scored
against it, the data associatedwith that transactionis returnedby this processto the
NetworkManageraspartof thefinal report. However,if thetransactionhaserrorsscored
againstit, nodatafrom that transactionis returnedto theNetwork Manager.Whenall the
transactionshavebeensubjectedto thiserroranalysis,tbi¢t_rocessis complete.

108

3.2.4.2 Process Name: Execution of Node Status Collection Chains

Inim_ I/O Network Identifier

Active Root Link

Logging Enable

OutlmlS: Status Collection Report

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.3.1, 2.4.2

Notes: None.

Description:

This process is responsible for executing status collection chains for the Network Manager

of the network specified by the I/O Network Identifier. Unlike reconfiguration chains,

these chains resemble other I/O chains in the system in that the number of transactions in

the chain is constant and the chain is always conducted with contention. The differences

between the reconfiguration chain and the status collection chain necessitates some

differences in the way in which these chains are executed. However, the differences are

few in number and will be described here.

Since the status collection chain is always run with contention, the Network Manager does

not need to supply this process with a Contention Option. Similarly, since the data which is

used to collect status from the nodes is smile, the Network Manager does not need to

supply a list of commands to be sent to the nodes. It does, however, expect to receive a

report back from this process. The Status Collection Report is a summary of the analysis

of status information obtained by the IOS during the execution of this chain. The report

takes the form of a discriminated record. One field of the record indicates whether or not

an interface failure was detected when executing this chain, and if there has been, whether

it is due to a failed FTP channel or failed IOS hardware. When no interface failure is

detected, another field indicates whether or not a babbler has been detected during the

execution of this chain, and if there has been, whether not it was detected during contention

for the network or during data transmission. When neither a failed interface nor a babbler

is detected, the last field contains status and data resulting from the conduct of each

transaction in the chain. This information is also packaged as a discriminated record, one

for each transaction in the chain. The first field of this record indicates whether or not the

transaction is selected. When the transaction is selected, another field contains the status of

the transaction. If the transaction had no errors, the last field will contain the data returned

by the node.

109

This processis dividedinto two mainfunctions,chainexecutionanderroranalysis,in the
samemannerasthe processwhich conductsthereconfigurationchain. Theexecutionof
the statuscollection chaindiffers from theexecutionof thereconfigurationchainonly in
that nochangesto theprogramwhich executesthis chainaremadeandnooutput records
needto beinitialized. Furthermore,oncethecommandto start thechain is written to the
ICR, the processsuspendsitself,while waiting for chain execution to complete. The
processsuspendsitself for the numberof millisecondsequal to the numberof selected
transactionsin thechainplusone.

Theerroranalysisis identicalto thatof theerroranalysisconductedfor thereconfiguration
chain with one distinction: if thetransactionis deselected,no processingis doneon that
transaction.Thereportreturnedto theNetworkManageralsoindicatesthat this transaction
is deselected.Sincethis processmay becalledby theNetwork Managerwhenerrorsare
expected,i.e. whenno responseis thevalid responseto atransactionto a node,theoption
of disablingerror loggingis alsoprovidedby thisprocess.

110

3.2.4.3ProcessName:

lnpuls:

Management of Status Collection Transactions

I/O Network Identifier

Node Number

Active Channel

OuBaas: Updated Status Chain

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.4.1

Notes: None.

Description:

This process is responsible for maintaining the node status collection program in the state

requested by the Network Manager and for maintaining a history of this information. In

this context, there are three services which this process provides: transaction deselection,

• transaction selection, and updating the status coUection chain in an IOS connected to a

recovered FTP channel.

The node status chain is an ordered set of transactions, one to each node in an I/O

Network. The program which controls chain execution consists of a set of instructions

called a header, which is executed once per chain at the start of the chain, and a set of

repeated instructions, one for each node in the network, which controls the transmission of

data on the network. Each member of this set is identical to every other member with a few

exceptions. The differences are the address of the output packet in the output instruction,

the address of the input packet in the receive input instruction, and the address of the next

instruction in the branch instruction. Transaction selection simply manipulates the address

operan d Of the branch instruction so as to either bypass or include the transmission of a

status command to a node.

To deselect a transaction, the Network Manager calls the subprogram Deselect Node Status

Transaction with the Network Identifier of its network, the Node Number of the node

whose status transaction is to be bypassed, and the channel identifier of the FTP channel

containing the active IOS. If the transaction is already bypassed, no action takes place.

However, if the transaction is not already bypassed, the deselection is logged in a static

variable, called the Selection Status, which is maintained by this process. Each network has

its own Selection Status with an entry for each node in the network. Another static

variable, called the Active Node Count, is decremented. Next a read pointer and a write

pointer are assigned values. The read pointer is assigned a value which allows it to read

only from the active DPM while the write pointer will write to all the DPMs connected to

111

thisnetwork.TheSelectionStatusof this networkis thensearchedin reverseorderstarting
with the transactionwhich is aboutto bebypassedfor the selectednodeclosestto (but
preceding)that transaction.This is thenodewhosestatusis collectedbeforethe statusof
thenodewhichis undergoingdeselection.If suchanodeis found,the addressoperandof
its branchinstruction is changedto point to the instruction pointed to by the branch
instructionof thedeselectedtransaction.If aselectednodeis not found,aswould be the
caseif thenodebeingdeselectedis the ftrst nodein thechain, theaddressoperandof the
branchinstructionin thechainheaderis changedto pointto theinstructionpointedto by the
branchinstructionof thedeselectedtransaction.Thereadandwritepointersareusedsothat
wheneveravalue is readform theDPM, aswith thevalueof the addressoperandof the
branchinstruction of the deselectedtransaction,it is read from one channelonly and
exchangedacrossall channels.However,whenevera value is written to the DPM, it is
written to all theDPMsconnectedto thisnetworksimultaneously.Theformer is necessary
becausechannelfailuresor simplexoperationof thesystemwill resultin errorsreadfrom
multiple,noncongruentsources.Thelatteris necessarysothatDPMsconnectedto all non-
failedFTP channels have the correct, current version of the status collection chain.

To select a transaction, the Network Manager calls the subprogram Select Node Status

Transaction with the Network Identifier of its network, the Node Number of the node

whose status transaction is to be bypassed, and the channel identifier of the FTP channel

containing the active IOS. If the transaction is already selected, no action takes place.

However, if the transaction is currently bypassed, the read and write pointers are generated

as for the transaction deselection process. Again, the Selection Status is searched in

reverse order starting with the transaction which is to be selected for the non-bypassed

transaction closest to (but preceding) that transaction. If such a transaction is found, the

address operand of the branch instruction of the transaction being selected is changed to

point to the same address that the preceding transaction points to. Following that change,

the address operand of the branch instruction of the preceding transaction is changed to

point to the transaction being selected. When no preceding transaction is found, as would

be the case if the transaction being selected is the fu'st transaction in the status collection

chain, the address operand of the branch instruction of the transaction being selected is

changed to point to the same address that the branch instruction in the header points to.

Following that change, the address operand of the branch instruction of the header is

changed to point to the transaction being selected. The read and write pointers are used in

the same fashion as in the transaction deselection procedure. Finally, the Selection Status of

the selected transaction is updated to indicate that this transaction is selected and the Active

Node Count is incremented.

The rh'rd subprogram provided by this process is called Update Node Status Chain. It is

used whenever an FTP channel has become desynchronized due to a transient fault and

therefore taken offline by the GPC FDIR process but later restored to service. Any

changes made to the node status chains of networks connected to this GPC through the

failed channel will not actually reach the DPMs in that channel. Of course, the changes will

112

be made to the node status chains residing in DPMs connected to non-failed channels.

When the failed channel is brought back on line and all its local memory has been aligned,

its DPMs must be reinitialized. Part of the reinitialization process will be to update the

status collection chains in these DPMs. The process begins by initializing a pointer which

points to one channel only, i.e. the channel being restored, since the changes made to this

chain already exist in DPMs belonging to other root links in the network. Next, the

address operand of the branch instruction in the header is initialized to point to the end of

chain program. Each value in the Selection Status of this network is then examined in turn

starting with the fhst transaction in the chain to determine whether or not that transaction is

selected. If it is not selected, it is simply passed over. If it is selected, however, the

address operand of the last selected transaction is changed to point to this transaction. In

the case of the first selected transaction that is found, the operand of the branch instruction

in the header is changed instead. When the last selected transaction is found, the address

operand of its branch instruction is assigned the address of the end of chain program.

113

3.2.4.4ProcessName: Testingfor Presenceof BabbleronNetwork

Inputs: I/O Network Identifier

Active Root Link

OutlmlS: Babbler Report

Requirements

Reference:

1/O Network Functional Requirements,

Section 2.4.1, 2.4.3

Notes: None.

Description:

This process is responsible for executing a chain on the network which will detect the

presence of a babbler. This subprogram is called by the Network Manager as a diagnostic

tool when it suspects the presence of a babbler on the network. The test is accomplished

by using the header of the reconfiguration program as if it were the entire program. As

with status collection and node reconfiguration, the processing is performed within a

window of time during which channel failures of the active root link can be detected. The

address operand of the branch instruction of the header is changed to point to the end of

chain program and restored at the completion of the test. The process suspends itself while

waiting for the chain to complete. To extend the time over which babbler detection can

occur, the full poll, rather than an immediate poll is conducted. The various fields of the

CSR, the final CSR and the ISR are examined for evidence of a babbler on the network.

This processing is described in detail in section 3.2.4.1. If a babbler, a failed channel, or

failed IOS is detected during this diagnostic test, the error is logged and a report is returned

to the Network Manager indicating the type of error which was detected. Otherwise, a

report is returned to the Network Manager indicating that no errors were detected.

114

3.3 I/O Network Databases

The I/O Network Databases serve as a repository of static information about I/O networks.

They contain a software description of the physical makeup of the I/O networks in the

system. They also contain the information necessary to map logical data related to networks

into physical data. The databases also contain information about the organization of the I/O
networks into I/O Services.

The I/O Central Database holds information about every I/O network and every I/O Service

in the system. The I/O Local Database contains information about the I/O networks to

which a particular GPC is physically connected. The I/O Local Database references the I/O

Central Database during program initialization to obtain information about the networks to

which its GPC is connected. Using this information; the I/O Local Database deduces other

information about its networks and stores all this data locally.

3.3.1 Process Name: _OCentralDamb_e

Inputs: I/O Network Identifier

I/O Service Identifier

GPC Identifier

Outlmls: Network Topology

I/O Service Descriptor

Connection Indicator

Requiren_.nts

Reference:
I/O Network Functional Requirements,

Section 2.3.2

Notes: In systems with mass memory, this data is stored on those

devices. In systems without mass storage, each GPC will

have an instance of this process.

Description:

This process is responsible for providing users with accurate, consistent information about

the physical makeup and logical organization of all the I/O networks in the system. This

information can be stored as binary data in a file or it can be generated by assignment

statements in a program and then transferred to an appropriate storage medium. In either

case, prior to accepting calls from users, it will verify that the network topologies it can

provide are self consistent. This means that node to node connections axe commutative,

i.e. if node 1 is connected to node 2, then node 2 is connected to node 3. Furthermore,

since a network may only be assigned to only one I/O Service, it will verify that a network

identifier appears in only one I/O Service descriptor. Since this database is static, these

115

checksneedto be performed only once. If any errors are detectedin the I/O Central
Database,anerrormessagewill bedisplayedfor anoperatorandfurther initialization will
beaborted.In this wayanypossiblerun timeproblemsdueto faulty dataareeliminated.

To obtain the topology of a network,a usermust provide this processwith the logical
identifier of that network. To obtaina servicedescriptorof an I/O Service,a usermust
provide this process with the logical identifier of that service.To obtain a network
connectionindicator, a usermustprovide this processwith the logical identifier of the
GPCaboutwhich it wantsnetworkconnectioninformation.

Theprimaryusers of this process are the I/O Local Databases from the various GPCs in the

system. Other users could be the Resource Allocator and the System Manager.

116

3.3.2 Process Name: 1/0 Local Database

Inputs: 1/0 Service Identifier

1/0 Network Identifier

Channel Number

Outlalm Connected Networks

Available 1/O Services

Network Topology

1/O Service Descriptor
Root Links

Channel Identifier

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.3.2

Notes: None.

Description:

This process is responsible for providing users with information about networks to which a

GPC is physically connected. This information is assembled at initialization or power up

time for use by other processes during run time. During system initialization, this process

reads data from the I/O Central Database about the I/O networks to which it is connected.

Its first action is to obtain from the central database a list of networks to which it is

connected and a list of 1/O Services which it must support. For each network to which it is

connected, it obtains from the central database a copy of that network's topology. For each

of these networks, it uses the information in the topology definition to generate a list of

which connect this network to its GPC. Rootlinks in an I/O network must meet certain

criteria as stated in Appendix B, Network Operating Rules. Once the data describing the

rootlinks has been collected, it is reviewed for correctness in accordance with these rules.

If any errors are detected in the 1/O Local Database, an error message will be displayed for

an operator and further elaboration will be aborted. As with the 1/O Central Database, this

eliminates any possible run time problems due to faulty data.

To obtain the list of networks to which this GPC is connected, a user makes a call to a

function which needs no parameters but which returns the list of connected networks. A

similar call will return to a user a list of 1/O Services which are available to this GPC. To

obtain the topology of a given network, a user must provide this process with the logical

identifier of that network. In a similar way, a user can obtain information which describes

the rooflinks of a given network. To obtain the 1/O Service Descriptor of an available 1/O

Service, a user calls a function with the logical identifier of that service. Finally, the

117

physical identifier of the channel containing a given rootlink is returned by a function which

has been provided with the logical identifier of that channel.

The primary users of this process are Network Managers, I/O Communication Manager,

and I/O Network Status.

3.4 I/O Network Status

I/O Network Status serves as a repository of information about the state of every network

in the system. Furthermore, since the network is a physical resource under software

control, the state is also comprised of information about the logical process which has

access to the network at any given time. Two processes share responsibility for

determining network status: the I/O Network Manager and the I/O Communication

Manager.

The hardware components in the network which are viewed as part of the AIPS system are

the nodes, the ports of the node, and the IOSs. (A link is defined as two ports on adjacent

nodes and the cable between them.) The state of the nodes and the IOSs is determined

solely by the Network Manager. This information is stored in Network Hardware Status.

Thus the hardware status is the Network Manager's view of the network hardware made

available to any other process in the system. Of course, the actual physical state of the

hardware may change many times during network growth and reconfiguration. However,

these transitionary periods are of short duration. Thus the values stored in Network

Hardware Status are stable values representing the view of the Network Manager after any

necessary changes in configuration have been made. The state of DIUs, the rootlink

currently in use, and who controls access to network resources is determined jointly by the

I/O Communication Manager and the I/O Network Manager. This information is stored in

Logical Network Status.

Since there may be several GPCs in a system, the status for a given network resides •

initially on the GPC which hosts the Network Manager of that network. A process on one

GPC which needs to obtain the status of a network connected to another GPC will use

Intercomputer System Services to effect the transfer.

118

3.4.1 Process Name: Network Hardware Status

Inputs: I/O Network Identifier

Node Status

Interface Status

Network Status

Network Is Active Flag

Update Generation

Outputs: Interface Status

Network Status

Update Generation

Updated Status Flag

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.3.3

Notes: None.

Description:

This process is responsible for maintaining current information about the status of the

network hardware of all the I/O networks in the system. Network hardware consists of

nodes, links and IOSs. An instance of this process exists on every GPC which is

connected to an I/O network. For each of these networks, a status object is allocated and

initialized. Any necessary information about the number of nodes and IOSs in the network

is obtained from the I/O Local Database. Since several processes may need to access this

data, each status object must be protected so that the information it contains is consistent.

That is, read/write accesses to the status object are restricted so that only one outside

process may write to the object at a time and that during this operation no other processes

can read the object. Furthermore, during a read operation, no outside process can write to

the object. However, several processes may simultaneously read the object.

The status of a node may be active, failed, or idle. The initial value of node status is idle;

however, nodes may have an idle status only prior to the activation of a Network Manager

for the network. Once the Network Manager has initialized the network hardware, the

status of a node must either be active or failed. When a node is failed, it means that no

operational link to that node exists. When a node is active, it means that the node has an

operational link to the rest of the network and that the Network Manager detects no protocol

violations when communicating with the node.

119

Links consist of two ports, one on each node, and the wire that connects them. Since it is

not possible to isolate a link failure to one of these three components, link status in fact is

described by the port status of the two ports which are at opposite ends of the link and

which always therefore have identical status. The status of a port is either idle, active or

failed. Unlike nodes, a port may.continue to have an idle status after a network is

initialized by the Network Manager. When the status of a port is idle, it means the port

hardware is not currently enabled. However, there are two possible reasons for this status.

First, there may be no other network element connected to that port. Second, the adjacent

element is a node and this port is part of a spare link to that node. As a spare port, it could

be used by the Network Manager to reconfigure the network in the event of a failure

somewhere else in the network. When a port is idle, it does not pass along messages

which its node receives on its other ports, and an idle port does not transmit (to other ports

of its node) messages which it receives. When the status of a port is active, it means the

port communication hardware is enabled. An enabled port gates messages it receives to

other enabled ports in its node and it retransmits messages received by other enabled ports

to other elements in the network. When a port is failed, it means that the Network Manager

has detected some communication protocol violation when using this port. The

enable/disable state of the hardware is not necessarily known. The failure may actually

exist beyond the port itself. What is significant about this status is that it indicates the

boundary of a fault containment region. The Network Manager will not try to use a failed

• port as part of the network.

The status of an IOS is either idle, available, active, failed-channel or failed-IOS. The

initial value of the status of an IOS is idle. During the power on sequence each IOS and its

root node are given a series of diagnostic tests. If they do not pass these tests, the IOS

status is downgraded to either failed- channel or failed-los, depending on the cause of the

failure. In a manner similar to that of nodes, IOSs may have an idle status only prior to the

activation of a Network Manager for the network. Once the Network Manager has

initialized the network hardware, the status of an IOS must be one of the other four

allowable values. An IOS with a status of failed-ios has been diagnosed by the Network

Manager or the power on test sequence as having a serious hardware fault. Such a fault can

be detected while using the IOS to run chains on the network. An IOS with this status is

no longer used by the Network Manager or by the I/O Communication Manager for any

network access. An IOS whose status is failed-channel, however, may not have any

hardware faults of its own but, nevertheless, cannot be used to execute chains because it is

connected to a channel which, according to GPC FDIR, has failed. If the channel is

brought back online, the status of this IOS is upgraded to available. Either type of failed

IOS status is considered a root link failure. An IOS whose status is active is the IOS which

is currently being used to execute chai:_ An IOS whose status is available is ready to

become the active IOS if there is a root link failure of any type in the active IOS.

This process supports several types of read/write operations. Network status consists of

node status and interface status. It is possible to read or write either part separately or both

120

parts in one subprogram call. The object here is efficiency: if the status of only one part

has changed, the writing process can indicate to this process which part to update. This

process will only update that part. If a user is only interested in one part of the status, it

may read only that part. Furthermore, a user can determine whether or not any part of the

status has changed since the last time it read status and therefore avoid an unnecessary

transfer of data. There is no reason to read status if the copy is already current.

Finally, in a distributed AIPS System it will be necessary to route calls for status to the

proper GPC for reply. This will require use of Intercomputer System Services.

121

3.4.2 Process Name:

Inputs:

Logical Status

I/O Network Identifier

Network Usability

Current Root Link

Unreachable DIUs

Outputs: Network Usability

Current Root Link

Unreachable DIUs

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.3.3

Notes: None.

Description:

This process supports the protocol which governs access to an I/O Network. The two

processes which may access a network are the I/O Network Manager of that network and

the I/O Communication Manager. Since only one of these processes can use a network at

any given time, a protocol needs to be in place to ensure non-overlapping use of the

network by these processes. Additional information about the status of the network is also

managed by this process. This includes the list of Unreachable DIUs and the root link

being used by the process in control of the network.

Network Usability may have one of three values, in-service, out-of-service, and repaired.

Whenever the network is in-service, it may only be accessed by the I/O Communication

Manager. Furthermore, only the I/O Communication Manager may take a network out-of-

service. Once out-of-service, however, a network may only be accessed by its Network

Manager. The Network Manager can set Network Usability to repaired, and the I/O

Communication Manager in turn can put a network back in-service. Whenever the I/O

Communication Manager detects a communication error when using a network, it takes the

network out-of-service by calling a subprogram in this process. The I/O Network Manager

can then be activated to perform its FDIR on the network. Once it has reconfigured the

network, it determines which, if any, DIUs are now unreachable, i.e. cannot communicate

over the network due to known hardware faults in the network _ DIU is unreachable if the

node to which it is attached is failed or if the port adjacent to tn6DIU is failed. This latter

case means that during the growth of the network, when an attempt was made to enable this

port, it appeared that the DIU was babbling and therefore needed to be isolated from the

network. After recording this list of unreachable DIUs, the Network Manager indicates that

it will no longer use the network by setting the Network Usability to repaired. The I/O

122

Communication Manager can then put the network back in-service. Whoever has access to

the network, also has write access to the shared variables of this process. Thus, the value

of the current root link is the value being used by whichever process controls the network.

The controlling process may change this to any other available root link if necessary. When

control is transitioned from one process to the other, the incoming process adjusts whatever

local data necessary to be able to make use of the current root link.

3.5 I/O Network Logs

This process is responsible for keeping a log relating to the history of network hardware

for each network in the system. The Network Manager and the I/O Communication

Manager both make log entries. The entries can be displayed on a terminal.

3.5.1 Process Name: I/O Error Logs

lnlmlS: I/O Network Identifier

Log Entry

Outvuls: Display of Log Entries

Requirements

Reference:
I/O Network Functional Requirements,
Secdon 2.3.4

Notes: None.

Description:

This process is responsible for maintaining a circular log of error information for each

network in the system. The errors will be recorded by the Network Manager and the I/O

Communication Manager. An error is loosely defined as any communications protocol

violation detected by any software module in the above processes. The logs are therefore

general purpose. The log should have fields for the network identifier, a node or root link

identifier, a string which identifies the subprogram making the log entry, a string to

describe the error and a field to allow up to four bytes of hexadecimal data to be recorded in

the log. Since all entries may not need all possible fields, various combinations of the

above fields should be allowed. Log entries will be time stamped by this process.

The log will display its entries in a chronological fashion, with the oldest entries appearing

fast on the display window. Each displayed entry will show the time stamp to the nearest

ten milliseconds, the string identifying the caller, and all other data stored in the entry in

neat columns. It will be possible to display the log for any network in the system.

123

3.5.2 Process Name: I/O Event Logs

Inputs: I/0 Network Identifier

Log Entry

Outram Display of Log Entries

Requirements

Reference:

I/O Network Functional Requirements,

Section 2.3.4

Notes: None.

Description:

This process is responsible for maintaining a circular log of event information for each

network in the system. The events will be recorded by the Network Manager and the I/O

Communication Manager. An event is loosely defined as any occurrence of interest which

any software module in the above processes wishes to record. The logs are therefore

general purpose. The log should have fields for the network identifier, a node or root link

identifier, a string which identifies the subprogram making the log entry, a string to

describe the error and a field to allow up to four bytes of hexadecimal data to be recorded in

the log. Since all entries may not need all possible fields, various combinations of the

above fields should be allowed. Log entries will be time stamped by this process.

The log will display its entries in a chronological fashion, with the oldest entries appearing

fhst on the display window. Each displayed entry will show the time stamp to the nearest

ten milliseconds, the string identifying the caller, and all other data stored in the entry in

neat columns. It will be possible to display the log for any network in the system.

3.6 Process Name: Network Status Monitor

Inputs: I/O Network Identifier

Network Display Database

Network Status

Outputs: Network Display

Requirements

Reference:
I/O Network Functional Requirements,

Section 2.3.5

Notes: None.

Description:

124

At presentdisplaysfor three network topologies are available, a six node network, a ten

node network, and a fifteen node network. Each display is run as part of the local

operating system in each GPC. Figure 20 is a diagram of the VT100 (black and white)

display of a 15 node network. The node ID is in the middle of each node with the five port

IDs surrounding it. The display uses the three levels of intensity of the VT100 graphics to

distinguish failed nodes, links or ports from active nodes, links or ports. Dashed lines

indicate idle links, solid lines indicate active links, and dashed, highlighted lines indicate

failed links. In Figure 1, the fact that node 02 is darkened indicatesthat it has failed. All

other nodes are active. The three root links (25, 26 and 27) are all active, but root link 25,

connected to Channel A, is currently the active interface to the network and is shown as a

thicker line. If a VT240 terminal is available, failed nodes and links are colored red, active

links are solid green lines, and idle links are dashed green lines. The network status display

can be requested by an operator command to the GPC local operating system via the

VT100 or VT240 and a RS232 link. The local operating system then displays the current

status of the network as in Figure 1 and continues to update that display as links or nodes

fail and reconfiguration takes pl.ace.

The display is derived from the Network Manager's view of the status of the network

hardware as read from I/O Network Status (Section 3.4.1). The display process

periodically queries the I/O Network Status process about changes in the status of the

network. If changes have occurred since the last time the display process obtained status

information, it obtains a new copy of the status information record. It compares its

previous copy of the status record to the new copy to detect which network components

have a new value of status and then updates the display accordingly. Thus the display is not

completely redrawn each time network statu s changes which produces a significant gain in

the response time of the display.

The network displays are presently specific to a particular network topology. The position

of each node and link is known in advance. This is in keeping with the fact that the

network topologies are presently also defined by static databases. However, it is possible

to enhance the present implementation by the use of more flexible data structures to

represent a network topology and by providing algorithms to dynamically deduce the

topology of any network connected to a GPC. When these capabilities are in place, a

logical next step is to implement a correspondingly flexible network display process.

125

25 27

26

Figure 20. I/O Network Display

3.7 I/O Network Data Dictionary

Active Root Link : A record containing the channel number and the channel identifier of the

FTP channel which is currently being used to access a given network via an IOS connected
to that channel.

Active Root Link Flag: A Boolean valued flag indicating whether or not a working
connection from a GPC to a root node exists.

Available I/O Services : An array of booleans indexed by I/0 Service identifiers, one for

each GPC in the system. When the boolean is true, the given service is available to the
GPC.

Babbler kcp_rt : A record containing the results of a test which can detect the presence of a

babbler on a network. It indicates whether or not the IOS is failed. If it is failed, it

indicates whether the failure is due to a failed PTP channel or failed IOS hardware. If the

IOS is not failed, it indicates whether or not a babbler was detected on the network by the
IOS.

126

BABBLER_REPORT (INTERFACE_FAILURE)

Case INTERFACE_FAILURE
when TRUE =>

INTERFACE_FAILURE_TYPE
when FALSE =>

BABBLER_DETECTED

Branch Record : A discriminated record which contains information about the nodes which

lie downline from an outboard of the failed node to which the branch belongs. If any nodes

lie on this branch, their node number are entered in a queue in the record. A boolean flag

indicates whether or not this branch is reconnected to the network or still requires further

network reconfiguration to make these nodes reachable. The number of nodes in this

branch is also kept in the record.

BRANCH_RECORD(ANY_NODES_IN_BRANCH))

Case ANY_NODES_IN_BRANCH
when FALSE =>

null;
when TRUE =>
RECONNECTED

QUEUE_OF_NODES_IN_BRANCH

NEXT_F_2qTRY_IN_QUEUE

Channel Identifier : An identifier which designates a particular physical channel of an IOP.

Channel Number : A logical identifier for a channel of an IOP which contains the IOS

connected to a given network.

Channel Selection : An array indicating which FTP channels interface to a particular

network.

Configuration Chain : An IOS program which executes a variable number of transactions

on the network for the Network Manager. It is designed to allow the chain to be run with or
without contention.

127

CONFIGURATION CHAIN

HEADER

LINKED 1 tLIST OF
TRANSACTE_S

2

NI

START POLL OR
NO OP INSTRUCTION

i

I
END OF CHAIN

PROGRAM

SEND OUTPUT
INSTRUCTION

6

GET INPUT
INSTRUCTION

BRANCH TO NEXT
INSTRUCTION

i

TRANSACTION

OUTPUT PACKET

I sere I

INPUT PACKET

O'g-ER I
Imc_ ! INFOI I

Configuration Commands : An ordered set of formatted messages which the Network

Manager wishes to send to nodes in its network. The number of messages can vary from a

minimum of one message to a maximum equal to the number of nodes in the network. The

messages constitute the output packets transmitted by the Configuration Chain.

NODE_COMMAND_ARRAY._RECORD

NODE_COMMAND_ARRAY

NODE_COMMAND_ARRAY

I I I 1 I I1 2 3 IVESSAGE "'" Co.Nr

Configuration Lifetime : The field of the node reconfiguration command message which

specifies how long the node should keep the port configuration also specified in the

message in effect. A value of one means that the change in configuration is permanent and a

value of zero means the change is in effect only until the response to this command has

been transmitted whereupon the previous port configuration is restored.

Configuration Report : A record containing the results of the attempt to send out a set of

Configuration Commands for the Network Manager. The first field indicates whether or

not the network interface is failed, and if it is failed, the cause of the failure. If the interface

is not failed, another field indicates whether or not a babbler was detected on the network.

128

If no babbleris detected,the lastfield is anarrayof NodeResponseRecords,onefor each
transactionexecutedby aConfigurationChain.

CONFIGURATION_REPORT(INTERFACE_FAILURE)
CaseINTERFACE_FAILURE

whenTRUE=>

ATTRIB UTE_FAILURE_TO_CHANNEL_OR_IO S

when FALSE =>

CONFIG_CHAIN_RECORD

CONFIQCHAIN RECORD (BABBLER_DETECTED)

Case BABBLER_DETECTED

when TRUE =>

DETECTED_DURINGCONTENTION_OR_TRANSMISSION

when FALSE =>

NODE_RES PONS E_ARRAY_RECORD

NODE_RESPONSE_ARRAYRECORD

I RESPONSE_COUNTNODE_RESPONSE_ARRAY

NODE_RES PONS EAR RAY

1 2

NODE

RESPONSE

RECORD

O • 0
RESPONSE

COUNT

NODE_RESPONSE_RECORD (HAD_ERROR)

Case HAD_ERROR

when TRUE =>

NULL

when FALSE =>

DATA

Connected Networks :An array of booleans indexed by network identifier, one for each

GPC in the system. When the boolean is true, the given network is physically connected to

the GPC.

Connection Indicator :A boolean valued object which when true indicates that a given

network is physically connected to a given GPC.

Contention Option : A boolean flag indicating whether or not the Network Manager wants

to execute a configuration with contention for the network, in which case the boolean is

true, or without contention, in which case it is false.

129

Current Root Link : A record containing the channel number and the channel identifier of

the FTP channel which is currently being used to access a given network via an IOS

connected to that channel.

Display of Log Entries : A display on a terminal or monitor screen of the contents of the

most recent entries in the log. The number of entries displayed will depend on the type of

screen used in the implementation.

DPM Partition : An object which designates which half of the DPM memory is selected,

the lower 4K bytes or the upper 4K bytes.

DPM Pointer : A pointer whose value is the address of the first addressable byte of one

DPM or a set of DPMs. When used to read from a DPM, the pointer value selects exactly

one physical DPM. When used to write to a DPM, the pointer value may select a set of

physical DPMs, at most one per channel, each occupying the same memory space within a

channel. The pointer imposes an organization on the memory space which supports the

execution of chains on an I/O Network and the reading and writing of data used by those
chains.

Ending Address of DPM Memory Block : The address of the last byte in a block of

contiguous Dual Ported Memory locations.

Error Analysis Report : A discriminated record summarizing the results of the error

analysis performed on the data contained in the Status Collection Report. It indicates

whether or not any errors were detected and if they were, whether or not the analysis is

conclusive. When an analysis is conclusive, the type of fault and other information relating

to the source of the error(s) is provided.

130

ERROR_REPORT_RECORD (STATUS)
Case STATUS

when NQERRORS -->
null

when ANALYSISUNSUCCESSFUL =>
null

when ANALYSIS_SUCCESSFUL =>
FAULT_ANALYSIS_RECORD

FAULT_ANALYSIS_RECORD (FAULT)
Case FAULT

when NQFAULTS =>
null;

when BABBLER =>
null;

when ROOT_LINK_FAILURE -->
FAKED_CHANNEL
ATTRIBU'I_D_TO

when LINK_FAILURE =>
FAILED_ROOT
FAILED_INBOARDPORT
FAILED_NODES

FAILED_NODE_SET
when TALKS_OUT_DISABLED_PORT =>

FAILED_NODE
when SINGLE_NODE_FAILURE .=>

FAILED_NODE
when BAD_ADDR_OR CONFIQDATA =>

FAILED_NODE

Fast Grow Option : A Boolean valued variable which when true directs the network to be

grown without performing any diagnostic tests.

GPC Identifier :A logical identifier which is uniquely assigned to every GPC in the system.

Inboard Port of Node Under Test : The port on which the node under test receives

messages transmitted by the active IOS of the network.

Initialized IOS/DPM for Network Manager : A dual ported memory to which programs and

data for executing chains for the I/O Network Manager have been written.

I/O Network Identifier : A logical identifier which is uniquely assigned to every physical
network in the system.

I/O Service Descriptor : A record which states whether a given rdO Service is local or

regional. In the case of a local I/O network, it contains an array of network identifiers

which specify the networks assigned to this service.

131

IO_SERVICE_DESCRI PTOR (SERVICE)

Case SERVICE
when REGIONAL =>

NETWORK ID
when LOCAL =>

NETWORK ID ARRAY

NETWORK_ID ARRAY

1 2 i IID • • •

INETWORKS

I/O Service Identifier : A logical identifier which is uniquely assigned to every I/O Service

in the system.

IOS Identifier : An logical identifier which designates a particular lOS which in turn maps

to a specific address range within an FTP channel.

Link Enabled Record: A discriminated record whose discriminant is a Boolean valued flag.

If the value is true, the link was enabled; otherwise a second field indicates the reason why

the link is not enabled.

Log Entry : The information passed to the I/O Error Log or the I/O Event Log by various

subprograms in the system. It contains the I/O Network Identifier, a time stamp, a field

indicating the subprogram which made the entry, a field for comments describing the

reason for the entry, and fields for up to four bytes of data which the logging subprogram

wishes to record.

Logging Enable : A boolean flag which indicates whether or not errors which are detected

should be logged to the I/O Error Log.

Long .DPM Address : A record which maps the thirty-two bit address space of the

M680X0 microprocessor into specific fields which can be used to generate pointers which

will allow the FTP to access a given IOS/DPM.

Maximum Retries : A positive integer which indicates the maximum number of times to try

to reconfigure the network.

• ,,:_,,GrK C.¢,itT,_u, _tlio,; A table wmcn no_os me current corttlgtwatlon ot each port of each

node in a network. A -crt may be enabled, in which case its configuration with respect to

the GPC is either inbo&,d or outboard, or disabled, in which case its configuration is

idleport. A properly functioning node will receive data transmitted by the GPC on an

inboard port and retransmit that data on all its outboard ports. A node may therefore have

at most one inboard port but several outboard ports. The inboard/outboard distinction is

132

from the point of view of the Network Manager only; the node hardware does not make

this distinction.

NETWORK_CONFIGURATION

I PORT I
1 2 CONFIG

t ARRAY

mRT_CONFm_ARRAY

I I i'"l1 2 COI'_G
TYPE

000

OOQ

NODES]

PORTS

Network Display Database : A database which contains information about the position of

nodes, ports and links in the graphics display of the network status.

Network Interface Status : An object which holds the status of all the interfaces to a given

network. The status of an interface may be active, idle, available, failed ios, or failed

channel.

NETWORK_INTERFACE_STATUS
NETWORK
INTERFACE

STATUS
RECORD

• • •

NUMBER
OF

CHANNELS

NETWORK_INTERFACE_STATUSRECORD

STATUS

Network Is Active Flag : A Boolean valued variable indicating whether or not the network

has been initialized grown by the I/O Network Manger.

Network Status : A record consisting of Network Interface Status, Node Status, and the

channel with the active root link to the network.

Network Subscribers : A list of nodes to which either a DIU or a remote GPC is connected.

The port number used in the connection is also given for each subscriber.

Network Topology : A table which describes the physical makeup of an I/O Network. It

consists of an array of records, one for each node in the network. The record holds the

physical address of the node and a port by port description of the network element adjacent

to the node through the port. The information in this table should be sufficient to grow and

maintain the network, to deduce the rootlinks to the network from a given GPC, and to

deduce the set of DIUs which are reachable through this network. The data in this table is

133

static; it does not change over time. Therefore, to save memory space and unnecessary

copying of data, it should be referenced by means of pointers.

NETWORK TOP(1OGY

2 INOMBERIF:iECC3PdZ) • • • of
NODE

NODE RECORD

NODE ADDRESS

PORTARRAY 1 2 PORT
PE:CORD

PORT RECORD (ADJACENT_ELEMENT)
Case ADJACENT_ELEMENT
when NODE -->

NODE_NUMBER
NODE_ADDRESS
PORT_NUMBER

when GPC =>
GPC_ADDR
CHANNEL
lOS

when DIU =>
DIU_ADDR
DIU_ID

• • •

NUMBER
a =

PORTS

Network Usability : An object whose value indicates which software process, the I/O

Network Manager or the I/O Communication Manager, is allowed to transmit on an I/0

network. A network which is in-service or repaired may only be accessed by the I/O

Communication Manager. A network which is out-of-service may only be accessed by the

Network Manager. A network which is repaired has been acted upon by the Network

Manager in response to a call by the I/O Communication Manager.

Node Number : A logical identifier of a node a network. Its scope is for a given network

only.

Node Status : An array indicating the status of each node in a given network. A node may

• be active, idle, or failed. An active node has ports enabled so as to make it part of the
virtllltl h]]_ whleh earri_e clnt_ nn tha n_t,unrlt A ¢a;la,'l ,_,,_Aa. ; ,4 k;,-.k ; 1_,,._I..

non-functional. It is isolated from the rest e _"*.he network by disabling ports on adjacent

nodes. An idle node is a node whose status is -nknown because no attempt has yet been

made to reach the node by the network manager.

134

NODE STATUS

I ' I 2
NODE_STATUS RECORD

I ADDRESS
STATUS

F:E)RT_STATUS_ARRAY

STATUS •
I:E-O3E)

PORT_STATUS_ARRAY

NUMBER
• • EF

I ' I ' I TA I" NUMBERPORTS£:F I

Node Response Record : A record in which the first field indicates whether or not

communication errors were detected when the transaction to the node was executed. If

errors were not detected, a second field contains the data which the node returned in

response to the command it received.

Node Under Test : The node number of a node to be tested.

Passed Diagnostic Tests : A boolean valued flag which when true indicates that the full set

of diagnostic tests have been passed. A value of false indicates that at least one test failed.

Relative DPM address : A record which is used to map the thirty-two bit address used by

the b'TP to accessa location in an IOS/DPM into a sixteen bit value which the IOS will use

to access the same location. Since the address space of the IOS is 8K bytes, only the lower

thirteen bits are used in the mapping, the three highest order bits are assigned a value of

zero. The mapping is defined below, where f is the Value of the i th bit in the sixteen bit
address:

0, if 15 <= i <= 13

f(i)= value of the ith bit in the thirty-two bit address if 0 <= i <= 11

value of the 15th bit in the thirty-two bit address if i= 12

Restore Record: A record containing information about the repaired network component

which the operator wishes to be returned to service. If a node is to be restored, the node

number is provided. If a link is to be restored, a node number and a port number adjacent

to that link is provided.

135

RESTORE_RECORD(NODE_OR_LINK)
CaseNODE_OR_LINK

whenNODE =>
NodeNumber

when LINK =>
Node Number
Port Number

Results of Channel OK Test : A boolean value which is true if the test indicates that an

FTP channel is not desynchronized and false if it is desynchronized.

Results of DPM Block Test : A boolean value which is true is the test is passed and false

otherwise.

Results of DPM Memory Tests : A boolean value which is true is the test is passed and
false otherwise.

Results of DPM Word Test : A boolean value which is true is the test is passed and false
otherwise.

Results of Spare Link Chain : The data and status returned by the I/O Communications

Manager after the Spare Link Chain has been executed on the network.

Root Link History : A table maintained by the Network Manager with an entry for each root

link in its network. The entry holds a tally of errors attributable to the IOS connected to

that root link.

Root Links : An array of records one for each rootlink from a GPC to an I/O network.

Each record contains information about the physical makeup of that rootlink. It contains the

node address of the root node, the port of the root node used to connect to the IOS, the IOS

identifier, and the physical channel containing the root link.

ROOTLINKS

ROOT_LINK_RECORD

i 12NANNEL

I0S

NODE_NUMBER

NODE_ADDRESS

PORT_NUMBER

ROOT
LINK

RECORD
• OF

CHANNELS

136

Spare Link Cycling Log : A log with an entry for each link in the network. The value of

an entry can be either cycled or not cycled. A value of cycled means that the link has spent

at least one active cycling period in the network in the current cycle or that the link is failed.

A value of not cycled means that the link is ready to be activated.

Spawning Node : A node from which further network growth is taking place or a node

whose port is activated fh-st when a link is being enabled.

Spawning Port : The port which is enabled first when a link is enabled. This port in turn

retransmits the reconfiguration command to the adjacent (target) tlode which enables the

adjacent port.

Spawning Queue : A queue into which node identifiers are placed in the order in which

those nodes are to be added to the network.

Starting Address of DPM Memory Block : The address of the first byte in a block of

contiguous Dual Ported Memory locations.

Status Collection Report : A record containing the results of the attempt to send out a set of

Status Collection Commands for the Network Manager. The f'irst field indicates whether or

not the network interface is failed, and if it is failed, the cause of the failure. If the interface

is not failed, another field indicates whether or not a babbler was detected on the network.

If no babbler is detected, the last field is an array of Node Response Records, one for each

selected status transaction executed by a Status Collection Chain.

STATUS COLLECTION REPORT(INTERFACE FAILURE)
Case INTERFACE_FAILURE
when TRUE -->

A'n'RIBUTED_FAILURE_TO_CHANNEL OR lOS
when FALSE =>

STATUS CHAIN ,RECORD

STATUS CHAIN RECORD (BABBLER DETECTED)

Case BABBLER_DETECTED
when TRUE =>

DETECTED_DURING_CONTENTION_OR_TRANSMISSION
when FALSE =>

NODE_STATUSARRAY_RECORD

NODE_STATUS_ARRAY.RECORD

NODE_STATUS_ARRAY(1 ..COUNT)

NODE STATUSARRAY

1 2 STATUS
RECORD

137

System Address : A thirty-two bit value which maps to some physical location in the

system. By which the M680X0 microprocessor accesses those physical locations.

Target Node : A node being added to the network during network growth or a node whose

port is activated last when a link is being enabled.

Target Port : The port which is enabled last when a link is enabled This port receives the

reconfiguration command from the adjacent (spawning) node which causes it to be enabled.

Unreachable D1Us : A list of DIUs which are attached to failed nodes and which therefore

cannot send or receive messages on the I/O network.

Update Generation : A value associated with each call made by an I/O Network Manager to

update the Network Status in the I/O Network Status process. Each time the status is

updated, a unique generation number is assigned to the current version of the status. Other

processes which wish to detect a change in the value of the Network Status may keep a

copy of the generation of the last status value they have obtained from I/O Network Status.

If the generation of this copy of network status is not equal to the generation of the current

copy of status maintained by I/O Network Status, then a new value of status could be

obtained by the process.

Updated Status Chain : A status collection chain which has been modified to deselect

specific node status transactions.

Updated Status Flag : A Boolean valued flag which indicates whether or not the Network

Status of a particular network has been updated by the Network Manager since the last time

this status was obtained.

138

4.0 ADA IMPLEMENTATION OF THE I/O NETWORK MANAGER

This section bridges the gap between the software specifications of Chapter 3 and the Ada ®

code used to implement those specifications. The Ada ® language is widely advertised as a

design language. 1 Grady Booch has put forward a high level diagramatic design

methodology. This methodology has been used to map the I/O Network management

software specifications into Ada packages, tasks and subprograms. This mapping is

represented by the Booch diagrams contained in this section.

These high level Ada® constructs are the framework supporting the detailed Ada

implementation, i.e. the code which embodies the software specification. The logic

described in the software specification is further realized by the Nassi/Shneiderman

diagrams, also contained in this section, which convert this logic into standard

programming control structures. The logic of the Nassi/Shneiderman diagrams could be

coded in any language, while still retaining the high level Ada ® organization of the overall

design.

! Booch, p. 46

139

I IO_NETWORK_DATA_TYPES_AND_CONSTANTS

(DrO It) TYPE
| -- _

I DIU_RECORD)

(NODE NUM TYPE)

| PORT NUM TYPE)

I ROOT_LINK_RECORD)

(! NETWORK_INTERFACE_ARRAY_ACCESS_TYPE)

| PORT RECORD)

C PORT_ARRAY_TYPE)

!

| NODE_RECORDTYPE)

(I NODE_ARRAY_ACCESS_TYPE)

C(, _o_o___ _r_)

(| IO_ID_TYPE)

! AVAILABLE_IO_SERVICES_TYPE)

m NET_SET_DESCRIPTORTYPE)

Software Specification Reference Number: 3.7

140

IO CENTRAL DATABASE

DIU_SPEC

CONNECTED_NETS_TO_GPC

VOr_tOGV

DATA IS CONSISTENT

NETS_OF_SERVICE

INITIALIZE_TOPOLOGY_DEFINITIONS

I
INIT_GPC ._NET_CONNECT

L
Software Specification Reference Number: 3.3.1

141

Subprogram: NETS OF SERVICE

Inputs: service identifier
Outputs: array of network identifier

Returns an array of network ids associatied with the specified service id 1

Subprogram: TOPOLOGY
Inputs: network identifier

, Outputs: a pointer to a network topology

Returns a pointer to the specified network's node array

Subprogram: DIU_SPEC
Inputs: diu identifier
Outputs: diu address

network identifier

Return the address of the diu and the network that the

DIU is connected to for the passed in diu identifier

Software Specification Reference Number: 3.3.1

142

Subprogram: DATA_IS_CONSISTENT

Inputs: network identifier

Outputs: boolean flag

for <each node in the net>

for <each port in the node>

?? Does the global database indicate that this port is
connected to another node ??

noyes

Call MATCH to
see if the data

from the port

agrees with
the database.

?? Does the global database indicate that this

port is connected to a GPC ??

yes no

Set GPC_PRESENT flag.

?? Has GPC PRESENT beenset ??

yes no

Return 'true' to signal that data is consistent. Raise NO_GPC exception

DATA_IS_CONSISTENT exception handler

?? Is the exception a NO_GPC exception ??

Yes no

Log "No GPC" error Log generic error message

Subprogram: CONNECTED_NETS TO_GPC
!nP uts: gpc identifier

Outputs: array of booleans

Returns an array of booleans where a TRUE entry means

the net is connected to the specified GPC.

Software Specification Reference Number: 3.3.1

143

Subprogram:INIT_GPC_NET_CONNECT
Inputs: none

Outputs: none

Initialize GPC NET_CONNECT array to all elements "false"

for <range of network id types>

for <the number of nodes in each network type>

for <the number of ports in each node>

?? Is the port which corresponds to these network,

node, and port numbers connected to a GPC ??

yes no .

Set the element of

GPC_NET_CONNECT which

corresponds to the port
being considered to 'true'..

Subprogram: INITIALIZE_TOPOLOGY_DEFINITIONS
Inputs: none

Outputs: none

for < each network in the system >
for < each node in the network >

for < each port in the node >

Assign Values to port records specifying

parameters of adjacent element.

Software Specification Reference Number: 3.3.1

144

¢" _) 8

" o 8

o

¢..o

¢,-°

¢"i

.,°
@-°

O
t--r_

_o

]

II

8 u _

¢,.°

= M

@.°

e-. ,_

m
I

-_ [..,.,

©

oo
" .

©

_ Z I

©

I

o _
Z

U-II

_

@

. _! °

©

tn

©
Z

Z
U..l ,_

U.l
.1

Software Specification Reference Number: 3.3• 1

145

IO_LOCAL_DATABASE

AVAILABLE_IO_SERVICES

ROOT_LINKS

CONNECTED_NETWORKS

SERVICE_DESCRIPTOR

TOPOLOGY

CHANNEL_ID_OF

LOCAL_NETWORK

CHANNEL_NUM

C CHANNEL_CROS S_REF_ARRAY

I
FIND_ROOT_LINKS

OK_ROOT_LINKS

NOT_DOUBLED

MATCH_IOS

CHECK_AVAILABLE

SET_CONI_"q'ED

I
I

I
I

I
I

I
I
|

I
k

)

I

I

I

I

I

I

Software Specification Reference Number: 3.3.2

146

Subprogram: AVAILABLE_IO_SERVICES
Inputs: none
Outputs: i/o services available on this GPC

Returns a swucture which marks all existing io
services as available or not_available on the local gpc .

Subprogram: ROOT_LINKS
Inputs: network identifier
Outputs: root links

Provides the root links of the network whose id is passed as a parameter I

Subprogram: CONNECTED_NETWORKS
Inputs: none
Outputs: array ofbooleans

Returns an array of booleans indicating
which networks are connected to this GPC

Subprogram: SERVICE_DESCRIFrOR
Inputs: io identifier
Outputs: a service descriptor

Accepts an index into the io service table and returns a service descriptorwhich contains one or more network id's associated with this io service

Subprogram: TOPOLOGY

Inputs: ' network identifier

Outputs: a pointer to network topology

?? Is the network identifier conncted to the network ??

no yes
return return a pointer

to the network node array

Software Specification Reference Number: 3.3.2

147

Subprogram: CHANNEL ID OF
Inputs: network identifier

channel number

Outputs: channel identifier

I Returns the channel identifier of given channel number and network

Subprogram: LOCALNETWORK
Inputs: network identifier
Outputs: boolean flag

Returns a TRUE if the network is local to the GPC

and FALSE if it is regional or not connected

Subprogram: CHANNEL_NUM
Inputs: channel identifier

network identifier

Outputs: channel number

Returns the entry from the channel cross reference array associated
with the given channel identifier and network identifier

Software Specification Reference Number: 3.3.2

148

_..

v

_.

_.°
¢,,°

?

-5

O I

I

o'1

I

H
_ N

,-1

x

Z

o

0

Software Specification Reference Number: 3.3.2

149

Subpro_am: NOT_DOUBLED

Inputs: none

Outputs: boolean flag

For CHAN1 = <the number of channels in the net>

For CHAN2 = <CHANI+I> to <the last channel in the net>

._. Is the same root link attached to both channels ??

yes m

report e_rer

raise

TWOROOTS_TOSAME_CHANNEL

Do the root links from both channels

connect to the same node ?.9

yes I'D

report error

raise TWO_ROOTS_TO_S AM E_NODE

return _ue

Exception handler for OK ROOT_LINKS

'.92.Is the exception an 1OS_IX)NT MATCH error ??

yes no

report error return false

return false

Subprogram: MATCH_IOS
Inputs none
Outputs: boolean flag

rid

for CHAN1 = <the range of channels attached to the net>

for CHAN2 = <CHANI+I> to <the last channel in the net>

?? Do both channels have the same lOS ??

yes

raise IOS_DONT_MATCH

Software Specification Reference Number: 3.3.2

150

Subprogram: CHECKAVAILABLE

Inputs: io identifier

Outputs: boolean flag

Get a list of the available I/O resources from the central database

.7?.Are the available resources regional or local 77

regional local

Use table lookup to see if the Call SET_CONNECTED to determmine if the

net is reachable from this GPC net is fully connected.

Return a boolean value, which corresponds to whether or not the I/O nets are properly connocted.

CHECK_AVAILABLE exception handler

?? Is the error a MIXED_CONNF.L'TION error 77

Report an improper connection error. Report that some other type of error occurred.

Subprogram: SETCONNECTED
Inputs: net_set
Outputs: boolean flag

For <The number of nets in the service>

Use table lookup to if each net is reachsble from this GPCsee

77 Are all of the nets reachable from this GPC .9?.

yes no

For <all of the nets in the service>

return true

Use table lookup to see if each net is reachable from this GPC

?? Are any of the nets reachable from this GPC ??

yes m

raise MIXED_CONNECTION remm false

Software Specification Reference Number: 3.3.2

151

f IO_NETWORK_STATUS

STATUSTYPE
i

INTERFACE_STATUS_TYPE

PORT;.STATUS_ARRAY(
Q NODE STATUS_RECORD

NODE_STATUS_ARRAY
|

(NETWORK_INTERFACE_STATUS_RECORD

NETWORK_INTERFACE_STATUS_ARRAY
|

NODE_STATUS_ARRAY_RECORD
i

NETWORK_INTERFACESTATUS_ARRAY_RECORD

PORTCONFIGURATION_TYPE

(
(

|

PORT_CONFIGURATION_ARRAY

Q NODE CONFIGURATION_ARRAY
g

Q NODECONFIGURATION_ARRAY_RECORD

NEI'WORKSTATUS_RECORD_TYPE

TESTFOR _NEW_STATUS

A

READ

WRFrE

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)

//

NETWORK_STATUS_TASK_TYPE

YOU ARE I //_

, A,.LI ///
--_ READIF I ///

WIRITE ALL i I!1

wRrrE_F . I / / /
-_ WRrFEA I ///

w_ ,, _ i _///
DI" WRITE NS I / I I

L__ /-'

/

)

Software Specification Reference Number: 3.4.1

152

Software Specification Reference Number: 3.4.1

153

Subprogram:TEST_FOR_NEW_STATUS

puts: i/o networkidentifier
utputs: lastupdatedflag

hasnewvalue

??Is last updated flag not equal to last written flag for this network ??

no] yes[Set has new value to FALSE Set has new value to TRUE

Subprogram: READ_ALL
Inputs: network identifier

last updated flag
last updated flag

Outputs: network status

?? Is the network connected to this GPC ??

n9
raise

network not connected to this_gl_
Update the network status

Subprogram: READ_IF
Inputs: network identifier
Outputs: interface status

?7 Is the network connected to this GPC ??

no
raise

network not connected_to_this_gpc

ves

date the interface status

Software Specification Reference Number: 3.4.1

154

Subprogram: WRITE_NS
Inputs: network identifier

network status
Outputs: none

[Update the node status or-the network

Subprogram: WRITE_IF
Inputs: network identifier

interface status
Outputs: none

[Update the interface and activity status of the network

Subprogram: WRITE IF A
Inputs: network identifier

interface status
active

Outputs: none

I Update the status of the network]

Subprogram: WRITE_ALL
Inputs: network identifier

node status
Outputs: none

Update the status of the network

Subprogram: WRITE_A
Inputs: network identifier

active
Outputs: none

[Update the activity status of the network

Software Specification Reference Number: 3.4.1

155

I IO_ERROR_LOGS

-I LOG_ERROR
I

DISPLAY_ERROR

t,

LOG_ERROR

Call LOG_ERROR_ENTRY to log the error. Overloaded versions of

LOG_ERROR exist to allow different calling conventions.

LOG_ERROR_ENTRY

?? Isthelog index equalto themaximum number of errorsthatcan be stored??

Reset the index to 1. Add 1 to the index.

Perform variable assigments to store error information in the error log array.

Add one to the count of total errors, roiling over to zero if an overflow occurs.

Exception handler for LOG_ERROR_ENTRY

Call LOG_EXCEPTION to record the exception.

DISPLAY_ERROR_LOG

Perform screen initilizations.

Print '_[OSS ERROR LOG" as a heading. (double height line)

rid

?? Are there any errors to print ??

yes

Print column headings.

for <the number of errors>

Printa description of each error, formatting tofitthe column headings.

r'rmta ClOSing nne, whicil tcpozm fire tut_ _Lm.b_ v_',..v,o ivE,_,.£.

Software Specification Reference Number: 3.5.1

156

LOG_EVENT

DISPLAY_EVENT

[

IO EVENT LOGS

LOG_EVENT

Call LOG_EVENT_ENTRY to log the event Overloaded versions of

I.£__EVENT exist to allow different calling conventions.

LOG_EVENT_ENTRY

?? Is the log index equal to the maximum number of enents that can be stored ??

yes m

Reset the index to 1. Add 1 io the index.

Perform variable assiements to store event information in the event 1o_ array.

Add one to the count of total events, rolling over to zero if an overflow occurs.

Exception handler for LOGEVENT_ENTRY

I
I

Call LOG_EXCEFFION to re_x_rd the exception. [

DISPLAY_EVENT_I/_

Perform screen initilizations.

Print "IOSS EVENT LOG" as a heading. (double height line)

?? Are there any events to print .9?.

I'D yes

Print column headings.

for <the number of events>

Print a description of each event formatting to fit the column headings.

Print a c!osing line, which reports the total number of events logged.

Software Specification Reference Number: 3.5.2

157

IOS DATA TYPES

(

(

(

(

(

(

(

(
(

(

(
(

(

TIMER_LIMIT_TYPE

HDLC IR TYPE)

HDLC SR TYPE

HDLC_CRI_TYPE

)
)

HDLC_CR2_TYPE)
HDLC_CR3_TYPE)

CHAIN_STATUS_REGISTER_TYPE.)
INTERFACE_COMMAND_REGISTER_TYPE)

INTERFACE_STATUS_REGISTER_TYPE)
POLL_REGISTER_2_TYPE)

CHAIN_STATUS_TYPE)
NODE_OUTPUT_RECORD)
NODE_INPUT_RECORD)

UNSOLICITED_INPUT_BUFFER)

L
Software Specification Reference Number: 3.2.1.1

158

-N

C

C

(
C

(

IOS_DPM_INSTRUCTIONS

By'rE)
I

OP_CODE_TYPE)

I
lOS_SHORT_INSTRUCTION)

I
IOS_CMPND_INSTRUCTION)

I
lOS_INSTRUCTION)

k

Software Specification Reference Number: 3.2.1.2

159

lOS_PROGRAMS

NODE_CHAIN_HEADER_TYPE)

I
NODE_'IRANSACTION_TYPE)

I

(NODE_TRANSACTION_ARRAY_TYFE_

I
(INIT_AND_TEST_PROGRAM_TYPE)

I
(NODE_CHAIN_PROGRAM_TYPE)

I
(END_OF_CHAI__PROGRAM_VVPE)

C lOS_IDLE_PROGRAM_TYPE)

k.

Software Specification Reference Number: 3.2.1.2

160

I

|

I
!

I
I
I

10S DPM MEMORY

IOS_DPM_ADDR)
SEMI_DPM_ADDR)

SEMI_DPM_SELEL__TYPE)
BUS_ADDR_BITS)
IOS_SELECT_TYPE)

CHANNEL_SELF_L-_ON_ARRAY)

IOS_TABLE_TYPE)
LONG_DPM_ADDR

.

DPM_ADDR_RF_.CORD)
DPM_ADDR_TABLE_TYPE)

DPM_ADDR]

RELATIVE_DPM_ADDR

IOS_Sb-7 _F.CT_TABLE

DPM_ADDR_TABLE

Software Specification Reference Number: 3.2.1.3

161

Subprogram: DPM_ADDR
Inputs: _os

channels

dpm_partition
rel_addr

Outputs dpm address

The high addr byte field of dpm address record is cleared.
The bus field of dpm record is assigned the constant shared bus.

The ios field of dpm record is assigned the value of the ios parameter.
The dpm_half field of record is assigned the

value of the dpm partition parameter.
The channel field of dpm record is assigned the

vahle, of the _hannel_ narame_ter

The dpm_addr field of dpm record is asssigned the
value of the rel addr parameter

return the dpm address

Subprogram: REL_DPM_ADDR

Inputs: system address
Outputs: relative dpm address

for < each CBA bit >

I Clear the bit

no
?? Are we usin_ the upper DPM memory ??

yes
Set high order bit of 12 bit address field.

Clear bit 15

(the bit that discriminates between lower and upper memory.)
return the low order word.

Software Specification Reference Number: 3.2.1.3

162

IOS DPM MAP

DPM_RF_ORD)

I
DPM_ACESS)

I
IN1T_IOS_DPM

IN1T_TEST_IOS_DPM

I
IN1T_NODE IO RECORDS [

I
I

IN1T_TEST_NODE_IO_RECORDS [
I

K._

Software Specification Reference Number: 3.2.1.4

163

Subprogram: INIT_NODE IO RECORDS
Inputs network identifier

channel

Outputs: initialize status collection output transactions

Ql_tain tooolo_v and root link data from the local database.
fnr < eac.h node in the netwnrk >

Generate _ node status comman_l,

Initi_liz_ output oacket with the node status command.
Initialize the output byte count for the configure nodes transaction

Initialize the output byte count for the status transaction.
Branch from the last transaction to end of chain program.

Subprogram: INIT_TEST_NODE IO RECORDS
Inputs: network identifier

channel

Outputs: initialize ios test input and output transactions

Obtain topology and root link data from the local database.(_¢n_rat¢ the Configure command to disable all oorts in root node.

Initialize _he first transaction with the above command.

Generate the configure command to enable root link port for 1 time.
Initialize the second transaction with the above command.

Software Specification Reference Number: 3.2.1.4

164

Subprogram: INIT_IOS_DPM
Inputs: dpm_ptr
Outputs: initializes ios, and the status collection and

reconfiguration programs

Initialize the interface command register.
Zero dpm (non-re_ister area).

Initialize the solicited chain pointer.
lnmalize the unsolicited chain pointer to los 1die program.

lnmallze timer limit register b_, d_sabling rimer.
Initialize poll register number 1.

Disable hdlc autoflag mode.

Disable hdlc for transmission and reception.
Initialize end of chain program.

Initialize ios idle program.
Initialize node status program header.

for < the number of node transactions >
Initialize node transaction instructions.

?? Is this the last node transaction ??

no I yes
Branch to next transacton. I Branch to eoc program.

Initialize node cohfig program header.
for < the number of node transactions >

Initialize node transaction instructions.
?? Is this the last node transaction ??

no yes
Branch to next transacton. Branch to eoc program.

Subprogram: INIT_TEST_IOS_DPM
Inputs: dpm_ptr

Outputs: initialize los test program

Initialize the header of the test program.
Initialize the first transaction instructions.

Initialize byte count of test input data to a non-zero value. I
Initialize the second transaction instructions.

Software Specification Reference Number: 3.2.1.4

165

I/O Sequencer/Dual Ported Memory Map

REGION FUNCTION ADDRESS

0000-00IF HARDWARE REGISTERS: 0000

Solicited Chain Ptr-R/W (Hi byte) 0001

Solicited Chain Ptr-R/W (Lo byte) 0003
Unsolicited Chain Ptr-R/W (Hi byte) 0004
Unsolicited Chain Ptr-R/W (Lo byte) 0005
Unused) 0006

Chain Status Register (CSR)-R 0007
Interface Command Register (ICR)-W 0008
Interface Status Register (ISR)-R 0009
Timer Limit Register (TLR)-W 0010

Poll Register # 1 (PR1)-W 0011
Poll Register # 2 (PR2)-W 0012
Time-R 0013
Reserved 0014
Reserved 0015

HDLC Control Register 1 (CR1)-R/W 0016
HDLC Control Register 2 (CR2)-R/W 0017
HDLC Control Register 3 (CR3)-R/W 0018
HDLC Receiver Holding Register (RHR)-R 0019
Address Register (AR)-W
HDLC Interrupt Register (IR)-R
Transmit Holding Register (THR)
HDLC Status Register (SR)-R
Reserved
Reserved

001A
001B
001C
001D
001E
001F

0030-003F CHAIN STATUS

0040-00FF INIT AND TEST PROGRAM

0100-01FF INIT AND TEST DATA

0200-057F NODE STATUS CHAIN

0600-09FF NODE CONFIGURATION CHAIN

0A00-A7F OUTPUT RECORDS FOR NODE STATUS CHAIN

0A80-0AFF OUTPUT RECORDS FOR NODE CONFIGURATION CHAIN

0B00-0C7F INPUT RECORDS FROM NODE STATUS CHAIN

0C80-0DFF INPUT RECORDS FROM NODE CONFIGURATION CHAIN

0E00-0E7F UNSOLICITED INPUT DATA BUFFFER

0E80-0EFF END OF CHAIN PROGRAM

0F00-0FFF UNSOLICITED CHAIN PROGRAM--KEEPS IOS IN IDLE

1NNN_I 171;"i1,1,7 T T_T:;'P I'_T-TA T_J_ A1_i'_ T_ATA

Software Specification Reference Number: 3.2.1.4

166

I
I

I
i

I
I

IOSS UTILITIES

VALID_SUM_CHECK

READ_ISR

RESIDUE_BIT_COUNT

SET_IOS_PRIO

VOTED_OUTPUT

Software Specification Reference Number: 3.2.1.5

167

Subprogram: VOTED_OUTPUT
Inputs: value

address

Outputs: none

Perform a from all exchange on value.
Write voted value to address

Subprogram: VALID_SUM_CHECK

Inputs: byte_ptr
byte_count

Outputs: boolean flag

Temp_sum is assisned a zero.
for < the number of bytes >

Femp sum is assigned temp sum plus the next byte
?? Is temp_sum less than or equal to modulus ??

n o I),es
I Subtract modulus from temp_sum.

??. Is temp_sum equal to zero ??

no yes
return a FALSE return a TRUE

Subprogram: RESIDUE_BIT_COUNT
Inputs: status register
Outputs: number of residue bits

The status register is converted into a hdlc_cr3_type.
return the residue bit count field of cr3. I o

Subprogram: SETIOS_POLL_PRIO

Inputs: prio
Outpus: ios instruction

The level field of PR2 is set to ios poll level.

The prio field of PR2 is set to the passed in prio.
The instruction is set up.

return the instruction

Subprogram: READ_ISR
Inputs: none
Outputs: value of the interface status register

Read the location addressed as the ICR

Type cast this value as interface status register type
Return converted value

Software Specification Reference Number: 3.2.1.5

168

IOSS INITIALIZATION

IN1T_AND_TEST_IOSS [

RESTORE_IOSS

Software Specification Reference Number: 3.2.2

169

Subprogram: INIT_AND_TEST_IOSS
Inputs: interface status

active

Outputs: n o n e

for < each network identifier >

no

?? Is this network connected to my gpc ??

)'es
Read the network status from i/o network status

Stop the ios
Perform the dpm address line test

Perform the dpm memory read/write test
Perform the network interface self test

l

1

?? Are there an), non-failed ios's
yes

Set active to TRUE

Write update interface status to IO network status

Subprogram: RESTORE_IOSS

Inputs: root links

dpm pointer
Outputs: channel to be restored

updated status collection chain
initialized ios

for < each network identifier >

n_

?? Is this network connected to my gpc ??

yes

Retrieve the root links from the local database
for < each root link that is connected to channel to be restored >

Initialize the registers and program chains
Initialize the node i/o data

update node status collection program

Software Specification Reference Number: 3.2.2

170

r,¢2

I

,d

<3

z

°°_
z

t...°

r_-, O

]

Software Specification Reference Number: 3.2.2, 3.2.3.2

171

IOS MEMORY TESTS

PASS_DPM_WORD_TEST [

PASS_DPM_BLOCK_TEST]

DPM_MEM_RW_TF_ST

DPM_ADDR_LINE_TEST

CHANNEL_OK

IOS IN BACKPLANE

Software Specification Reference Number: 3.2.3.1

172

Subprogram: PASS_DPM_WORD_TEST

Inputs: network identifier
channel

Outputs: boolean flag

Fill _attemtheword with 1
._. Does me word contain pattern

no

log an
error
failed

pattern
test

restore
the word

return
a FALSE

yes

Fill the word with pattern 2
?? Does the word contain pattern 2 ??

no yes
restQre the word restore the word

log an error message calculate the offset for
pattern test the next call to this routine

return a FALSE return a TRUE

Subprogram: PASS_DPM_BLOCK_TEST
Inputs: network identifier

channel
start address
end address

yes

log an
error

message
invalid
address

range
return
a TRUE

Store the start and end addre#ses in a tempory variable

?? Is the start address greater than or equal to the end address ??
no

Ensure that the start and end adresses are divisable by two
for < the number of words >

aStore the current word in _le
current word l_attem 1wlm

_e current word contain pattern 1
no

log an
error
failed

pattern
test

return
a FALSE

},es

Fill the current word with pattern 2

?? Does the current word contain pattern 2 ??
yes no

restore the word r¢_tor¢ the word

return a TRUE log an error

failed pattern test
return a FALSE

Software Specification Reference Number: 3.2.3.1

173

Subprogram:DPM MEM...RW TEST
Inputs: netv_ork identifier
Outputs: interface status

interface status

Write test pattern 1 into memory
Verify with test pattern 1

Wnte test pattern 2 into memory
Verify with test pattern 2

Subprogram: WRITE
Inputs: test pattern

Outputs: none

Write test pattern in low¢r partition of memory
Write test pattern in upper partition of memory

Subprogram: VERIFY
Inputs: test pattern
Outputs: none

for < the number of channels >
Is the _ status _ channel ok

_¢es

?? Has the channel failed according to the GPCFDIR ??
no

to FA L $'-E

for < each location in the lower.partition of memory >
?? Does the pattern match the pattern expected ??

no

Set failure to TRUE
Save the address where the failure occured

?? Did the channel fail ??
no yes

an error message
Channel failed after test

mark interface status failed channel
exlt

< _ the u0per oartTtion of memory_ >
?? Does the pattern match the pattern expected ??

no

Set failure to TRUE
the address where the failure occured

?? Did the channel fail ??

no [.yes

log an error message log an error message
lOS failed channel failed afterA_ _

mark interface status mark interface status
failed lOS failed channel

exit

Software Specification Reference Number: 3.2.3.1

174

Subprogram:DPM_ADDR_LINE_TEST
Inputs: network identifier

interface status

Outputs: interface status

Test with normal .pattern b :
Write.pattern to corres ondin 1 wer memory....._artition location

Write attern to corres ondin u er _ition location
Keaa t_ao¢ me pattern Irom each channel by."

for < each channel >

?? Is the interface status of this channel ok ??

9 yes

?? Has the channel failed according to the GPC_FDIR ??

_,es

log an
error

Channel
failed

before
test.
mark

inter-

face
status
failed

channel

no

Initialize failure to FALSE

for < each location in the lower partition of memory >
?? Does the pattern match the pattern expected ??

yes no
Set failur_ to TRUE

Save the address where the failure occured and exit

for < each location in the upper partition of memory >
?? Does the pattern match the pattern expected ??

yes[noSet failure to TRUE
Save the address where the failure occured and exit

nQ
?? Does Failure equal TRUE ??

yes
?? Did the channel fail ?.9

no

log an error
IQS Failed

mark interface status
failed IOS

yes

log an error
Channel F_iled After T¢_[,
mark interface status

failed channel

Software Specification Reference Number: 3.2.3.1

175

Subprogram: DPM_ADDR_LINE_TEST (Continued)
Inputs: network identifier

interface status
Outputs: interface status

Test with ,juxtaposed pattern by::
Write pattern to corresponding lower memory partition

location with _uxtaposed bytes.
Write pattern to corresponoing upper memory partition

location with juxtaposed bytes.
Read back the pattern from each channel by:

for < each channel >
.. s t e mterace status o t _s c anne'o ..

_es

?? Has the channel failed according to the GPC_FDIR ??
no

error

mess
Channel

failed
before

test.
mark
inter-

face
status
failed
hann

for < each location in the lower partition of memory >
.. pattern _ pattern exp_

no

Set failure to TRUE
Save the address where the failure occured and exit

for < each location in the upper partition of memory >
.. Does the l_attern match the _attern expected??

no

Set failure to TRUE
Save the address where the failure occured and exit

?? Does Failure equal TRUE ??
yes

?? Did the channel fail ??
no

_g an error
lOS Failed

status
failed lOS

yes
Tog an error

Channel Failed After Test.
m_ status

failed channel

Software Specification Reference Number: 3.2.3.1

176

Subprogram: CHANNEL_OK

Inputs: channel identifier
Outputs: boolean flag

channel A

transmit pattern 1
from A

assign check

exchanged value

no

returr
FALSE

?? case < channel identifier > ??
channel B channel C

transmit pattern 1 transmit pattern 1
from B from C

assign check assign check
exchanged value exchanged value

?? Does check equal pattern 1 ??

yes
?? ca_'e < channel identilfier > ??

channel A channel B channel C

:ransmit pattern 2 transmit pattern 2 transmit pattern 2
from A from B from C

assign check assign check assign check
exchange value exchange value exchange value

?? Does check equal pattern 2 ??

no yes
return a FALSE return a TRUE

Suboro_ram: IOS IN BACKPLANE
Inputs: network identifier
Outputs: n on e

Write a pattern to the solicited chain pointer of the IOS
For < each root link in the network >

yes
?? Does the pattern match the pattern written ??

no

The ios is deemed unreachable by the FTP and the error is lo_ged
The interface status of the ios is marked failed.ios

Software Specification Reference Number: 3.2.3.1

SoRwa._ Specification Reference Number: 3.2.4

177

,.._.

• [.f.l "o.
I_ "_ ,-_ ,-_
0"" .-m _

Z _ 0 I:::lZ_ o o
°I'4 °_--U

O.

_,Q.- N

e_ = ¢,L

= _ =1 "
r _._ 0

_ _0_, I 0 I=

0

o

Software Specification Reference Number: 3.2.4.1

178

U4

0
Z

0

0

L.

Z "

__._ :.

_ 0

0 .,-,

0
• . _ _

i c

"_ ._ _

_ o= _ -. _

oo

°o _- 0

0

,._ "_'_

Software Specification Reference Number: 3.2.4.1

179

IOSS FOR NET MGR

NODE_COMMAND_ARRAY_RECORD)

NODE_RESPONSE_ARRAY_RECORD)

CONFIG_CHAIN_REPORT)
NODE STATUS_RECORD)

NODE_STATUS_ARRAY

STATUS_CHAIN_REPORT

)

(

I
I
I

I
I

BABBLERREPORT

CONFIGURENODES

CONFIGURE_NODESNO_LOG

COLLF_Cr_NODE STATUS

CO--NODE_STATUS_NO_LOG

DESELECT_NODE_STATUS_TRANSACrION

SELECT N ODE_STATUS _TRANS ACTION

UPDATE_NODE_STATUS_CHAIN

TEST_FOR_BABBLER

k

,I

I
I

I
I
I

I
I

Software Specification Reference Number: 3.2.4

180

ca

u_

o"._ _'

z e g o°_ °,N

_ .

• I=l I=l I=l

_.- _

0

Software Specification Reference Number: 3.2.4• 1

181

O
r,.)
z

I

z
<

I
Z

<

o

°_

° ,,,,q g_-°
O

m_ _

I '_ _

I r_ -_
Z ,_

u.l
[..
txl

I

-
.. = _ " _._

.. _, _ =._ =
: "" _ 0._ _

-

o

0

Software Specification Reference Number: 3.2.4.1

182

Z
O

<

Z
<

O-
Z

0

<

Z

_ 0

_.N m
0 _°_

0

L.

L.

0

"" _ !: = 8 e '- _"

,,°

°_

o ¢) o

N o

o

.._ "= ._

_3 _*"_

Software Specification Reference Number: 3.2.4.1

183

L,
¢3

_3

°_

..i_ =
o=_=

[: -

_,-. 0

Software Specification Reference Number: 3.4.2.2

184

0

Software Specification Reference Number: 3.4.2.2

185

8
o'1

Z
.<

[.-, =

o o

°. _

0

0

0

N

-..°

.._°

=

o 0 ,....

o
_.=

:0

0

,_.°

¢.,.,

c
E _

0
E ,-

_ :"

_ _ -. ._

. ¢,.,.

8o ° -_ ._, o i_ :-

0

°

:0

0

0

0

,_

Software Specification Reference Number: 3.4.2.2

186

Subprogram:DESELECT_NODE_STATUS_TRANSACTION
Inputs: network identifier

node
Outputs: none

no
?? Is the node currentlv selecte_l ,99

Set the node selection status to FALSE
Decrement the active node CQ_lnI

Set up pointer to all DPMs
connected to network

?? Is a previous node selected ??

no yes
Branch from header Branch from the previous node

?? Is a subsequent node selected ??

no I yesBranch to end of chain Branch to that node

Subprogram: SELECT_NODE_STATUS_TRANSACTION
Inputs: network identifier

node

no
?? Is lh¢ node currently deqele_ted ??

YeS
Set up pointer to all DPMs

_gnnected lQ network
?? Is a previous node seleCted ??

no yes
Branch from header Branch from a previous node

to selected transaction to selected transaction

?? Is a subsequent node selected ??

no yes
Branch from selected transaction Branch to that node from selected

to end of chain transaction
Set the node selection status to TRUE

Increment the active node count

Software Specification Reference Number: 3.4.2.3

187

Subprogram: UPDATE_NODE_STATUS_CHAIN
Inputs: network identifier

channel

Outputs: none

Set up pointers to the DPM designated by network identifier and channel
Set found to FALSE
for << each node >>

?? Is the status transaction for this node selected ??

no yes
Set found to TRUE

?? Is this the first selected transaction ??
no

no

Branch to this transaction

from previous transaction

yes
Branch to this transaction

from header

Set previous transaction to the current transaction
??Any transactions selected ??

yes
Branch from last selected transaction to end of chain program

Software Specification Reference Number: 3.4.2.3

188

Subprogram: TEST_FOR_BABBLER

Inputs: network identifier
root link

Outputs: repo_

?? Is the channel ok ??

no

log error
to non

re-alignable

areaand

loop

foreves

no

log
e_for

report
failed

channel

yes.

Set up report to reflect the assumption that everything is ok

Set up pointer to dpm and chain to run with poll

Save branch to address of last transaction (to next transaction)
to be restored after chain completion

Branch from Header to end of chain program
Clear Final cst

Set up solicited chin pointer to run config nodes ms program

Wait for chain to complete and read data and restore branch

?? Failed a dx pattern test ??
m

yes

77 Is the root link
channel bad 77

yes yes

log error

report failed
channel

no

"l? Channel failed during chain execution

and has been resynched ??

no

?? stuck

on

hiuh 99

no yes

no

"!? Is the chain complete 7?

yes

Stop this ios in

case it's babbling
] _'_ th_ _

?7 babbler on the network 77

yes

log error and

mp_ babbler
detected

no

log error and

report failed ios

Software Specification Reference Number: 3.4.2.4

189

(

IO_NETWORK_MANAGER

ERROR_TYPE

(ERROR_REPORT
I

NODE_OR_LINK_TYPE

(
I

RESTORE RECORD

I
NETWORK STATE TYPE

)

)

)

)

)

START IO NETWORK_MANAGER

STOP_IO_NETWORK_MANAGER

I
REPAIR_NETWORK

I

I

I

I

I

I

I

I
REST(

GET_NETWORK_STATE

PUT NETWORK STATE

GET_ACTIVE_ROOT_LINK

PUT_ACTIVE_ROOT_LINK

LOAD_SPARE_LINK_TEST

EXECUTE_SPARE_LINK_TEST

UPLOAD_SPARE_LINK_TEST

)RE_FAILED_NODE_OR_FAILED_IOS

Software Specification Reference Number: 3.1

190

IO NETWORK_MANAGER (body)

(
(
(
I
I

SPARE_TEST_COMMANDS

SPARE_TEST_RECORD

SPARE_LINK_TYPE

T_ T I_"_PT_"'I_'_

NET_MAN_TASK_TYPE

)
)
)

Software Specification Reference Number: 3.1

191

Subprogram:IS_LOCKED
Inputs: flag

Outputs: boolean flag.

Test and Set the flag

!! Is tlag atreacty setr:
yes I no

return FALSE I return TRUE

Subprogram: STOP IO NETWORK_MANAGER
Inputs: i/o network identifier
Outputs: stop report

no

Set stop

report
to net not
connected

to this pc
log the event

?? Is net connected to this b_3c ??
yes

?? Is net manager started ??

yes
Call the stop entry in the
manager of this network

Set m__running to FALSE
Set stop report.had errors to FALSE

no

Set stop report to net

manger not running
log the event

Subprogram: STOP IO NETWORK_MANAGER

PUts: i/o network identifier
tputs: stop report

no

Set stop
report

to net not
connected

to this gpc
log the event

?? Is net connected to this gpc ??

yes
?? Is net manager started??

yes
Call the stop entry in the
manager of this network

Set m_r_running to FALSE
Set stop report.had errors to FALSE

no

Set stop report to net

manger not runnin_
log the event

Subprogram: REPAIR_NETWORK
Inputs: i/o network identifier

Outputs: manager accepted call

tsaii repmr entry in the manager ot tnls network
!! Entry acceptea !7

yes] no:Set m_ acceptect call to IF, U_ _et m_r accepted call to I-ALSI_"

Software Specification Reference Number: 3.1

192

Subprogram:RESTORE_FAILED_NODE_OR_FAILED_IOS
Inputs: i/o networkidentifier

restore information

Outputs: manager accepted call

Call restore failed part entry in the manager of this network
?? Entry accepted ??

yes I noSet mer accepted call to TRUE Set mm" acc¢pted call to FALSE

Subprogram: GETNETWORK_STATE
Inputs: i/o network identifier
Outputs: network state

Return the network state for this network

Subprogram: PUT_NETWORK_STATE
Inputs: i/o network identifier

new state
Outputs: network state

Assign the new state to the network state for the this network

Subprogram: GET_ACTIVE_ROOT_LINK
Inputs: i/o network identifier
Outputs: channel record of active root link

Return the active root link for this network

Subprogram: PUT ACTIVE ROOT LINK
Inputs: i/o n_twork identifier -

new active root link

Outputs: active root link

Assign the new active root link to the active root link for this network

Subprogram: EXECUTE_SPARE_LINK_TEST
Inputs: i/o network identifier
Outputs: none

Set up pointer to dpm of this network
Set up solicited chain pointer to run config nodes ios program

tart cnam execuuon

Wait for chain to comp_'&e

Software Specification Reference Number: 3.1.2.4,3.1.2.5

193

Subprogram:
Inputs:
Outputs

LOAD SPARELINK TEST
I/O network identifier
chain loaded

_es

?? Are spare cycle commands locked ??
no

__)_es

?? Is the root link used for cycle com-mands not equal to the acti_2_veroot link ??
no

?? Was there an error in larevious c_vcle ??
no

Chain not loaded

Unlock spare cycle commands

?9 Channel is OK ??
no

Chain not loaded
yes

Load

spare
link

cycle
command

Unlock spare
cycle commands

Software Specificat;o. Reference Number: 3.1.2.4

194

Subprogram:UPLOAD SPARE LINK TEST
Inputs: I/O network identifier
Outputs: Data from spare link cycle commands

Read CSR. ISR. final CSR. SCP from activ¢ I0$
Read data from trans_fiQn_

Set sDar_ inp_l_ _QTRI.IE
Set system error detected to TRUE

?? Channel OK ??
no

Stop lOS

Log error

yes

?? Chain complete ??
yes

:t Is contenuon state not equm to macuve
or possession default or poU tx fail ??

yes

yes

yes

no

'!'! Stuck on high '!?
no

tor << each transaction >>
?? Xmit error '!?

yes

Set

system
error to
TRUE

no

"!'! Is byte count equal to mit value ??

yes

Log error

Exit

no

?7 Is byte count not equal to

correct byte count ??
no

?'! Receiver error 7?

yes no
?'! Is the number

of residue bits

not equal to 3 ??
yes no

Set status '!? Not valid
of that sumcheck ??

transaction yes no
to had error

Software Specification Reference Number: 3.1.2.4

195

I

I
I

I
I

NET_MAN_TASK_TYPE

ENTRY START

ENTRY STOP I

I ENTRY CYCLE_SPARE_LINK I

ENTRY RESTORE_FAILED_PART]

I UPDATE_INTERFACE_STATUS_AND_DPM_MEM

I

[s_i_c-i'_I<__o_c,,'_ [.
I

SETUP_NEXT_S PARE_LINK_CYCLE_COMMAND

/
PROCES S_SPARE_LINK_CYCLE_DATA]

/
Software Specification Reference Number: 3.1

196

Subprogram: NET_MANTASK_TYPE
Inputs: i/o network identifier

network topology
network status

Outputs: network status
network state

Accept

Accent call to obtain i[o network identifirer
Read network topology from local database

Read initial network status

Zero error count in root link history
Update interface status

loop
Accept call to start

Grow network

Write status
Set uo spare link cvclin_ command

Unlock spare link cycling command
Set network state _0 in service

While << not stopped >>
Select one entry call

Accept Accept Accept call to cycle
stop call

Set

network
state to
out of

servce

_et

stopped

to TRUE

call to call to

repair restore
Call failed

repair part
network Call

restore
network

spare links
Uodate interface status

?? Valid test data ??
nc

yes

Process spare test data

?? Any errors in test ??
yes I . u

handle Setup next spare link
errors cycle commands

Unlock spare link
cycle commands

Software Specification Reference Number: 3.1

197

Subprogram:RESTORE_NETWORK
Inputs: part to restore
Outputs: network status

?? Does network have active root link ??
no yes
Fast

regrow Link
Case part to-restore

?? IS link a root link ??
no yes
Set Set statusof port

status adj to link to idlei
of Set statusof

ports interface adj to
adj link to available
to Set configuration

link of port adj to link
to to outboard

idle Reconfigure
root node

Node
Set node reconnectedto FALSE

for << eachport on node>>
?? Is ad_element an active node ??
no yes

Tr), to enable link
?? Link enabled ??

n o y_
Mark status

of ports active
Mark config
inboard or
outboard

Set, node recon-
nected to TRUE

exit
?? Node Reconnected ??

nol

.9? Is node active ??

_/es

For << each port in node >>
case (Adjacent element)

Node (not GPC
used to Set

reconnect) interface
status to

available
Set status of

port to active
Set config of

port to outboard
Set interface

no Yes
Set status

of ports
to idle

Write status to network status

DIU

status to available

Reconfigure node

Update unreachable DIU list
Setup spare link cycle commands

Set network state to repaired

Software Specification Reference Number: 3.1.2.5

198

Subprogram: REPAIR_NETWORK
Inputs: none
Outputs: none

No active
root link
?? Failed
channel

back

online??

n c yes
Fast

Regrow

Case repair action
Root link Bad spare link Normal repair

switch
Select

available
root link

cycled

?? Last spare link
was failed ??

no yes

Fast Restore

Undate interf_t_9 _(a(us and DPM
Set change in status to FALSE

Collect node status

(_tll d_lI_ onaly_is
?? Data errors detected ??

regrow
of

networ_

link

replaced
by last
spare
cycle
Mark

status of

ports adj
to failed
link as
failed

Set up new spare link
cycle commands

Write status to network status

yes

Call
maintain
!network

Set

change
in status
to TRUE

_tes

Set network state to repa_rea
Uodate_l enrfg_hal?l¢ DII3_

no

n9
Call error analysis

?? Errors dete_l 99

yes
?? Is error transi,nt??

yes no
Call Call

repair maintain
transient network

Set change
in status
to TRUE

?? Chan_e in status ,9?
no

Set network state to repaired

Software Specification Reference Number: 3.1.2.3

199

Subprogram:UPDATE_INTERFACE_STATUS_AND_DPM_MEM
Inputs : interface status

GPCFDIR status
Outputs: network status

updatedDPM

Set change in interface status to false
for << eachinterface>>

?? Does interface status equal failed channel ??

)tes
?? Is the channel ok ??

no yes
Set interface status

to available

Update status chain
Set change in

interface
status to TRUE

no

?? Does interface status equal available ??
yes

?? Is the channel not ok ??

yes
Set the interface status to failed channel

Set change in interface status to TRUE

no

nG

no

?? Is there a change in the interface status ??

I yesWrite the network status

Subprogram: FAILED_CHANNEL_BACK_ONLINE
Inputs: interface status

GPC FDIR status

Outputs: boolean flag

for << each interface >>

?? Does the interface status equal failed channel and
the channel is now ok ??

no yes

Log the event the channgl i_ _a_k online
Return TRUE
Return FALSE

Software Specification Reference Number: 3.1.2,3.1.2.4

200

Subprogram: SELECT_LINK_TO_CYCLE
Inputs: network topology

network status
Outputs: spare link to test

yes

Set selected to FALSE

7? Error in previous spare link test ??
no

No

[leW
test_

While << link nQt _¢lfcted >>

Obtain node and port to consider for spare link cycling

?? Does node equal start node & port equal start port ??
),e s no

No link ?? Is node active and adjacent to an active node ??
to cycle

yes no

Set
selected
to TRUE

?? Is port idle ??
n o yes

Cycle this spare link_
Set selected to TRUE

?? Is node active and

adjacent to a gpc ??
n o yes

Switch root link
Set selected
to TRUE

Software Specification Reference Number: 3.1.2,3.1.2.4

Subprogram: SET_UP_NEXT_SPARE_LINK_CYCLE_COMMANDS
Inputs: spare to cycle
Outputs: spare link cycle commands

?? Is the link a root link ??
no

Determine target node
Determine spawning node

Set number of commands ecual to four

Set up spare link cycling commands to:

Disable inboard port of target node
Disable port of node under test adjacent to target node

l_nable port ot spawning node aOjacent to target node
Enable port of target node ad acent to spawning node

yes

201

Subprogram:
Inputs:

Outputs:

PROCESS_SPARE_LINK_CYCLE_DATA

responses to spare cycle commands
error flags

?7 Is the link a root link 2?

yes no

Y_
Set

regrow
flag

?? System error detected ??

yP_

Update
status

and

config-
uration

lln

?? Normal response pattern ??
n_

?? Is it a bad link ,.9?

yes
Set recover

spare link
test flag,
and save

port/node to
be recovered

no

?? Is there no response from
all transactions or

response from all ??
yes

Set spare link
error flag to
call maintain

on next

repair call

no

Set

regrow
flag

Software Specification Reference Number: 3.1.2.4

202

I
I
I
I
I

I
I
I

(
(

NETWORK_GROWTH

GPC_SUBSCRIBER_RECORD)
I

DIU_SUB SCRIBER_RECORD)
I

GROW_NEFWORK I

I
GROW_NEIWORK_ASSUMING_

NO_FAILURES_DURING_GROWTH

I

RUN_DIAGNOSTIC_CHEL_]
I

GROW_TO_ROOT_NODE [
1

ADD_REMAINING_NODES I
I

Av_r_ _DAD]_ DE'_LI_ • Tk_/'_ {

I

_D_REMOTE_G_

ADD_DIUS

RESET_STATUS

Software Specification Reference Number: 3.1.1

203

Subprogram: GROW_NETWORK

Inputs: I/O Network Interface

Network Topology
Root Links

Node Configuration
Network Status
Current Channel

Fast Grow Flag

Outputs: Node Configuration
Network Status
Current Channel

Grow,Network_Assuming_No Failures_During_G rowth

Monitor Network

?? Did monitor chain find faults ??

no yes

?? Has growth reached max tries ??

no yes

Loop Back Set node
to status for

Grow Network_Assuming_No_Failures_During Growth all nodes
- to failed

Subprogram: RESET_STATUS

Inputs: Network Status
Node Configuration

Outputs: Network Status

Node Configuration

Set status of all nodes to idle

Set status of all ports to idle

Set all ports in all nodes in node configuration to idleport

Network is not active

Software Specification Reference Number: 3.1.1

204

Subprogram: GROW_NETWORK_AS SUMING_NO_FAILURE_DURING_GROWTH
Inputs: i/o network identifier

network topology
root links

node configuration
network status
current channel

grow successful flag
fast grow flag

Outputs: node configuation
network status
current channel

growth successful flag

Reset status.

Set grow successful to FALSE.
Grow to root node.

?? Is root node active ??
no yes

Add remaining nodes
Set status of nonactive nodes to failed

Add spare root links
Add dius

Add remote Igpcs
Set Grow successful to TRUE

Software Specification Reference Number: 3.1.1

205

Subprogram:GROW_TO_ROOT_NODE
Inputs: i/o network identifier

root links

network topology
network status

node configuration
spawning queue
next entry
root node active flag
fast grow flag

Outputs: network status
node configuration
spawning queue
next entry
root node active flag
fast grow flag

Prioritize root links

Repeat until active root link found or no more root links to try

Repeat until no transmission errors or tries exceeds maxtries
Contention option is set to with contention

Configure node with 1 active.port to root link
?? Transmission errors ??

_/es

no yes
exit Lo K the error

?? Babbler detected ??

n o yes
Contention option is set to without contention

?? Transmission errors in last try ??
no

Disconnect
root node
and fail

root port
and IOS

?? Fast growth selected ??
yes

?? At least 1 t_ood outboard port ??

n o yes
Initialize spawning queue

with root node and set
root node active to TRUE

no

Perform diagnostics on
root node

?? Node passes diagnostics ??
yes no

Disconnect root node
Fail root node

Fail adj. ports
Fail lOS

Software Specification Reference Number: 3.1.1.1

206

Subprogram:ADD_REMAINING_NODES
Inputs: i/o network identifier

root links

network topology
network status

node configuration
spawning queue
next entry
network subscribers

fast grow flag

Outputs: network status
node configuration
spawning queue
next entry
network subscribers

fast grow flag

no

for < each node in the spawning queue >
Select the spawning node fromthe spawning queue

for < each idle port >
5elect a 1die port on a spawning node to be a spawning port

"!'! Is there an adj element "!'!

yes
Add node

and port
to GPC list yes

Add node

and port
to Diu list

no

Fail

spawning
port

Fail adj
port

Disconnect

adj node

_tes
?? Is the ad, element a GPC ??

no

?? Is the adj element a DIU ??
no

?? Is the ad,jacent node idle ??
yes

Enable link between spawning
port and port on the adi node

?? Was the link enable sucessful ??

yes

Set spawning port active
Set ad port active

Update node configuration of

spawning node and ad.j node
?? Fast grow selected ??

no yes
perform diagnostic

check on adj node
?? Pass diagnostics ??

n o yes
Set adj node active

and add it to the

spawning queue

Software Specification Reference Number: 3.1.1.2

207

Subprogram: RUN_DIAGNOSTIC CHECK

Inputs: node under test
i/o network identifier
network topology
inboard port of node under test
network configuration
current channel
network status

passed diagnostic test
Outputs: network configuration

network status

passed diagnostic test

no

Set passed diagnostic check to TRUE
for < Each idle port in node under test >

?? Is the adjacent element an idle node ??
yes

Enable link between test port
and port on adiacent node

?? Is the link successful ??

no

return

port on
adj. node), e s

Disconnect Write
1i n k. status

failed
node

for adj.
node

no yes
Fail test Run test on adjacent node to

port, fail detect node transmitting when disabled.
?? Does the adi. node transmit when disabled ??

Disconn
link

no

?? Does test node retransmit when disabled ??
no yes

Set pass diagnostic

check to FALSE
exit

?? Passed diagnostic check ??
yes

Run test for talking out of turn on node

?? Does test node talk out of turn ??
no

return
yes

Set passed diagnostic check to FALSE

Software Specification Reference Number: 3.1.1.3

208

Subprogram:NODE_TRANSMITS_WHEN_DISABLED
Inputs: node under test

port under test
Outputs: boolean flag

no

return
FALSE

Configure node under test to disable all ports
?? Does node respond ??

yes
Lo_ transmit when disabled error against this node

return TRUE

Subprogram: NODE_RETRANSMITS_WHEN,DIS ABLED
Inputs: node under test

port under test
inboard port
adjacent node

Outputs: boolean flag

Configure node under test with only inboard port enabled
Configure one shot port on adjacent

node for one transmission only
Command node under test to return status

?? Resaonse from adiacent node or valid fram seen from ad i. node ??
no yes

return Lo_ retansmit when disabled error against this node
FALSE return TRUE

Software Specification Reference Number: 3.1.1.3

209

Z

E-

0 I
[..,

Z

pg_

,.

_ _ = ,- =_ o

o_

°I °

-_° L

I= o

C.-o 0

Software Specification Reference Number: 3.1.1.3

210

Subprogram: ADD_SPAREROOT_LINKS

Inputs: current channel
i/0 network identifier
root links

network topology
network status

node configuration
fast grow flag

Outputs: network status
node configuration

for < each root link in the network >

no

nc

?? Is the interface _tat¢, cquol _o idle ??

yes
?? Is the root node active ??

)'es

Repeat until root node connected or tries exceeds max tries
Call configure node tO enable root oort of root node

?? Have any errors been detected ??
yes , no

Need to disconnect Root node connected

?? Need to disconnect ??

no yes
Set status of root port to active Call configure nodes to disable
Set configuration of root port root port of root node

to outboard Fail root port
Set status of ios to available Mark interface status failed ios

for < Each root link >
?? Is interface status available ??

no

yes
Set

interface

states
to

failed
channel

yes
GPC FDIR sa)'s channel is failed

no

?? Fast /growth selected ??

yes no

no

Collect status using this root link

?? Are there an)" errors detected ??

Call con re nodes to

disable root port
Set interface status to

failed ios

Set configuration of
root part to idle port

Software Specification Reference Number: 3.1.1.4

211

Subprogram: ADD_REMOTE_GPCS

Inputs: current channel
i/o network identifier

network topology
GPC count
GPC list
network status

network configuration
Outputs: network status

network configuration

For < each GPC in list >

Tar et Node := Node Adjacent to GPC
Target Port := Port Adiacent to GPC

?? Is Target Node Active ??
No

Call

?? Reconfi_uration
n?

Call configure nodes
to disable target port

of target node
Set target port status

to failed

yes

for,< the number of possible Iri¢_ >

configure nodes to enable target port of target node
?? Errors detected ??

_'es no
exit

successful 7?

yes

Set target port status
to active

Set target port
configuration
to outboard

Set target port
configuration to

idle port

Software Specification Reference Number: 3.1.1.5

212

Subprogram: ADD_DIUS

Inputs : current channel
i/o network identifier

network topology
DIU count
DIU list
network status

network configuration

Outputs: network status
network configuration

unreachable DIU list

For < each DIU in list >

Target Node := Node Adjacent to DIU
Target Port := Port Adjacent to DIU

?? Is Target Node Active ??
No yes

for < the number of possible .tries >

Call configure nodes to enable target port of target node
?? Errors detected ??

yes no
exit

?? Reconfi_uration successful ??

no yes
Call configure nodes to dis-

able target port of
target node

get target port status
to failed

Set target port configuration

to idle port
Add DIU to unreachable

DIU list

Set target port status
to active

Set target port
configuration
to outboard

Software Specification Reference Number: 3.1.1.6

213

NETWORK_FAULT_ANALYSIS

FAULT_TYPE

FAILED_NODE_LIST

FAILED_NODE_SET

FAULT_ANALYSIS_RECORD

ANALYSIS_STATUS_TYPE

ERROR_REPORT_RECORD

ERROR_CLASS 3

ERROR_TYPE_RECORD

ERROR_SUMMARY_TYPE

ERROR_SUMMARY t

k

ERROR_ANALYSIS

DATA_ANALYSIS

TRANSIENT_ANALYSIS

INBRD_PORT

ROOT_OF_FAILED_TREE

FAILED_TREE

Software Specification Reference Number: 3.1.2.2

214

Subprogram: ERROR_SUMMARY
Inputs: status report
Outputs: error summary

?? Does the status report indicate an interface failure ??
yes no

Error

summary yes
reports Error

any summary
interface reports

errors any
is TRUE babbler

errors
is TRUE

Y_#
Error summary

reports any
error is FALSE

?? Does the status report indicate a babbler detected ??
no

Set any to FALSE and all to TRUE
for << each node >>

?? 19 the node selected ??

n o yes
?? Did the node have a error ??

yes no
Set any to TRUE Set all to FALSE

.9"?Is an), FALSE ??
no

?? Is all FALSE ??

no yes
Error summary repol :s Error summary reports

any error is TRUE all errors is TRUE
Return the error summary

Software Specification Reference Number: 3.1.2.2

215

Subprogram: ERROR_ANALYSIS

Inputs: i/o network identifier
current channel

node configuration
network topology

Outputs: error report record

Perform error summary on node status collection data
?? Have any errors been detected ??

no

Set
yes

?? Is error class an interface failure or all nodes failed ??

error },es
report I Set

'no

?? Is error class a babbler ??

tO no error y e

errors report Set
Return to error

error indicate report
report root to

link indicate
failure a

and babbler

current Return
channel error

Return report
error

report

nQ
Initialize error analysis variables:

Set failed node count to zero

Set failed node set to empty
Set nodes visited to empty

Verifiy set is empty
Clear failed node list

for << each transaction in status collection chain >>
?? Is the transaction selected ??

nc yes

7? Did the transaction have an error ??

no yes
Increment failed node count

Add node to failed node set
Put node on failed node list

?? Does failed node count equal 1 ??

yes no
• Error report Find root of failed tree

indicates ?? Root found ??

single node n o yes

failure and Add Root to verify set
identifies Zero recursion

failed node count
Return error ?? Is there

report a failed
tree??

n o yes
?? Does verify

set equal
failed node

Error report set ??

indicates n o yes
analysis Error Report

unsucessful shows link

failure and
associated
information

Return error report

Software Specification Reference Number: 3.1.2.2

216

Subprogram:

Inputs:

Outputs:

DATA ANALYSIS

I/O network identifier
current channel

node configuration
network topology
error report record

te

| r a

E_to no errors
r<< n r-" -'_ _-"

?? Any transmission errors detected on this response 77
no

no

Raise

?? Did node status indicate a valid frame received

on an idle vort adiacenl; 19 _ n0d_ 7,9

yes
?? Is this the only node found in this condition so far ??

n o yes
undiagnosable error

A_si_n field_ of faul_ analysis

?? Is the bad
no _ _yes

[Assign fields of error report
Return error reoort

Subprogram: TRANSIENT ANALYSIS
Inputs: !/O network identifier

first report
node configuration
current channel

Outputs: error report

transient flag

ves

Errors

are not
transient

t_plleqt node statu_

?? Do results of second status collection agree with results of first ?.9
no

.6? Were an rror d tec ed in "second status collection ??

2¢es
Errors Collect node star--in

a r e ?? Third status collection results agree with second ??
transient yes ---'-[no

Errors are not transien--n_.t _g'_ors are transient

Software Specification Reference Number: 3.1.2.2

217

iSnUbl:_.rogram:FAILED TREE
puts: root

Outputs: boolean flag

Increment recursion count
?? Has this node been visited or the maximum

recursion count been exceeded ??

yes
Raise

IT}
Addnodeto nodes visi_ set

undiagnosable
error

yes

Fer<< e_ pertoffffis nede >>
?? Is this port configured inboard or idle ??

ID

no
??.Is the__tto thislzort a ncde ??

yes

Ish is natein tte xtaxle set
no

?? Failed tree of this

adjacent node ??
yes no

Return false

Return true

P,ettm false

Subprogram:
Inputs:

Outputs:

ROOT OF FAILED TREE
none

node number type

Set found to FALSE

for << each failed node in failed node list >>
ldentifv inhoard rmrt of this failed node

Find type of element adi to inboard port of failed node

?? Element adjacent to this port a node ??
no

?? Element adj to this

port a GPC ??
no yes

?? Only,

Set root to current
failed node

Set found to TRUE

Return

yes
?? Response from this adj node had error ??

no yes
root found so far ??

no

Raise

undiagnosable
error

exit
?? Found a failed root ??

y_S nO

value of root Raise undiagnosable error

Software Specification Reference Number: 3.1.2.2

218

Subprogram:
Inputs:

Outputs:

INBRD_PORT

node_number
port_number

7? Is the

no

node
for << each port >>

configuration for this port
yes

Set found to TRUE

an inboard port ??

no

Return the port
?? Node has no inboard port ??

yes

Log the error

Subprogram: EQUAL_NET_STATUS
Inputs: first report

second report
Outputs: boolean flag

yes

Initialize eq_l_l _Q FALSE

?? Do the first and second reports both show an interface failure

and then have their attributed_to field set to the same value ??
no

Set

equal
tO

TRUE

?? Do the first and second reports both not report an interface
failure and both report a babbler dectected and then both

have their detected field set to the same value??
ye s no

no

?? Do the first and second records both

not report a babbler dectected ??

yes
for << each node >>

?? Is the node for the first-record selected and then

the had_error field of the first and second
record are not set to the same value??

no yes

Set equal to FALSE
Exit the loop
Return equal

Software Specification Reference Number: 3.1.2.2

219

MAINTAIN_NETWORK

MAINTAIN_NETWORK

UPDATE_CONFIGURATION_TABLE

REPAIR_TRANSIENT

Software Specification Reference Number: 3.1.2.3

220

C
C
C
C

I
I
i
I
I

MAINTAIN_NETWORK

BRANCH_CONNEC_ON RECORD)
I
ADJ_NODE_RECORD
I
BRANCH_RECORD

BRANCH_RECORD_ARRAY

)
)

)
HAS ACTIVE RE

INBRD_PORT

ADJ_NODE_REC

CANT_REACH_FAILED_NODE

. DISCONNECT_ROOT_LINK

RECONNECT I

RECONNECTTOBRANCH

ADD NODES TO Q

REMOVE_NODE_FOR_TALKER_TEST [
.

SWITCH_ROOT_LINK
I

REPAIR_LINK_OR_NODE_FAILURE [
I

REMOVEFAILEDNODE_AND
RECONNECTTO_TREES

(body)

!

RECONNECT_OR_REMOVE_OR_REGROW

t_
Software Specification Reference Number: 3.1.2.3

221

Subprogram:
Inputs:

Outputs:

MAINTAIN_NETWORK
network topology
i/o network identifier
current channel

error report
root links

root link history
network status

node configuration
node configuration
network status

root link history
current channel

n9
Regrow
n_twgrk

Set
l_.,con-

figure

y_,,_
Select

fast

grow

Initialize reconfig_successful to FALSE
Initialize repair attempts to zero

while << reconfigure is unsuccesful and repair_attempts
is less than m_ repail" attempts >>

Increment repair_attempts
?? Error analysis successful ??

yes
?? Fault type is babbler ??

no

yes
Set

?? Fault type is no fault ??
no

?? Fault type is root link failure ??
SUCCESS

to TRUE
ootion

Regrow
network

Set

recon-

figure
Success

to TRUE

recon-

figure
Success

toT-RUE

Y_

Switch
root

links

yes
Call

Repair
link

or

node
failure

no

?? Fault type is link or node failure ??
no

?? Fault type is talks out disabled port
or bad address or configure data ??

yes
Call

Remove
node
and

reconnect
tO trees

no

?? Fault type is single
node failure ??

no ye_
Call Reconnect

or remove

or regrow
?? Unexpected event during reconfiguration or network
has no active root link and rem'owth not tried ??

no y_
Select fast grow option
Regrow network

Software Specification Reference Number: 3.1.2.3

222

Subprogram: REPAIR_TRANSIENT
Inputs: changes
Outputs: changes

No transient analysis logic in place yet hence no changes to net will occur
Set changes to FALSE I

Subprogram:
Inputs:

Outputs:

UPDATE CONFIGURATION TABLE
network topology
first node

new inboard port
node configuration
node configuration

n?
Set done updating

to TRUE

Set done undatin2 to FALSE
.qe.t e_urrent node. to flr._t node.

while << not done uD_l_lting >>
Set found inboard port to FALSE

for << each port in current node >>
?? Is this oort _he inl_Qar_l pQrt 9f current node ??

n 9 yes
Set found inboard oort to TRI, JE

Set value of old inboard por_ to inboard por_
xi

Set the confi_._urati0n of the new inboard oort of current node to. inl_Qa_'d
?? Inboard port found in current node??

Y_
77 Adiacent

Set config of old
inboard port of
current node to

idle D0r _
Set done updating

to TRUE

element is GPC ??

no

Set config of old inboard
port to outboard

Using Network topology
assign values to current

node and its new inboard

port

Software Specification Reference Number: 3.1.2.3

223

Subprogram: HAS ACTIVE_RL
Inputs: interface status
Outputs: boolean flag

fQr << each channel >>
?? Is the interface status of this channel set to active ??

yes no
Return TRUE

Return FALSE

Subprogram: INBRD PORT
Inputs: node "humber type
Outputs: port number type

no

for << each port in port number type >>

?? Is the configuration of-this port inboard ??
no yes

Set found to TRUE

Return the port
?? No inboard port was found ??

yes

Log the error
Raise a constraint error

Subprogram: ADJ_NODE_REC
Inputs: target node record
Outputs: adjacent node record

Look up the tarl_et node in the network topology
Return the node number and port number of the

node adjacent to this port of the target node

Subprogram: CANT_REACH_FAILED_NODE
Inputs" failed node

Outputs: boolean flag

for << each port >>
?? Is the element adjacent to this port a node

and the status of the port active ??
no yes

Return TRUE

Return FALSE

Subprogram:DISCONNECT ROOT LINK
Inputs: root link to" aisco_nect

Outputs: none

Set up command to root node to disable port facin_ IOS
Call configurenodes with the no lolg option

Set the status of that root link to failed ios

Software Specification Reference Number: 3.1.2.3

224

Subprogram:RECONNECT TO BRANCH
Inputs: my branch

fail_ node set
root of failed tree

port facing this branch on root of failed tree
Outputs: result of reconnection

Set repair complete to false
Set branch reconnected to false

while << branch is not reconnected >>

?? Any nodes left to try ?2
no yes

Select target node from branch

for << each port of target node >>
77 Is this port an idle port adjacent to an acitve node which

is not in the failed node set ??
no yes

Set spawning node to adjacent node
Set up command to spawning node to enable

port adjacent to target node
Set up command to target node to enable

port adjacent to spawning node
Set up command to node at root of failed _ree

to disable port adjacent to failed link
Select contention option for chain execution

Call configure nodes

Babbler
Detected

?? Summarized errors in error report shows ?
Interface All
failure failed

Deseleet contention option and retry once
Summarize errors in second try

No_

Mark status of ports
active

Set config of target port
to inboard

Set config of spawning
port to outboard

Call update config table
Collect node status

?? An), errors ??

yes no
Set repair
complete
to TRUE

Set connection to
branch to TRUE

?? Errorsummary shows ??
Babbler or error only
on root of failed tree

Disconnect mot of failed
tree from this branch

Set status of ports to failed
Set configuration

of norts to idl¢ port
Reenable link between

spawning and target nodes
?? Link enabled ??

yes

Set status of ports to active

Set config of target
port to inboard

Set config of spawning
port to outboard
Set connection

to branch to TRUE

Any
errors

retry once
I

Any other
error

Disconnect
link between

target and
spawning

no node

Set status of

ports to failed
Set

configuration
of ports

to idleport
Lo_ event

Software Specification Reference Number: 3.1.2.3

No

errors

I/F
Error

Log
event
Raise
unex-

pected

event

during
recon-

figur-
ation

attempt

225

Subprogram: SWITCH_ROOT_LINK

Uts: error reports
tputs: none

Set status of suspected mot link to value inerror report (failed ios or failed channel)
?? Is status of suspected mot link equal to failed ios ??

no yes

Count "s._.pare" mot links._(.a_are mot link has available status)
disconnect mot link & add 1 to mot link history of failed root link

no

?? Error report shows
failed channel ??

_esfor<< toS>>
wait for
channel
renair

?? _my
channels

ok ??

yes no

update
status

chain
Set root

link
status

of
restored

channel
to ac_ve

Set

reconfig
SUCCESS

to TRUE
exit

?? Reconfig-
uration

Successful 9?

no !yes
Regrow
network

using fast

grow
onfion

Set reconfig
successful
to TRUE

?? Any spare mot links ??
yes

While << mot link failure not fixed

and spare root links left to try >>
;elect candidate mot link from spares
Collect node status through this root link

Update configuration table
to reflect new root link

Analyze node status information
Generate local error report

?? Analysis successful ??
yes

?? No errors detected ??

no

77 Fault type _s rootlink failure ?'

no
Raise

excep- yes
tion Root link

unex- failure
pected fixed set
event to TRUE

during Set

recon- Reconfig
figure Successful

set to TRUE
Set status

of this
mot link
to active

IL

no

regrow
net-

work
with
fast

grow
option

Set

recon-

figur
Succes-

ful

tO

TRUE

Set

current
channel

to this
root link

multiple root
link failure
Mark root
link status
with value
from local

error report
?? failed ios
in this root

link ??

no yes
Call dis-

connect
this root

link

root link

history
of this

root link

no ¸

Root link
failure fixed
set to TRUE

Assign active
to status of

this root link

Assign this
root link

to current
channel

Asssign local

error report
to global

error report
Since

reconfigure
successful is

still FALSE
the maintain

procedure will
loop again to
process this

new error
information

Software Specification Reference Number: 3.1.2.3

226

Subprogram:
Inputs:

Outputs:

RECONNECT (to target node)
target
failed node set
link enabled

Set link enabled to FALSE

for << each _ort in target node >>

.9.9 Is this an idle port adjacent to node .9.9
n o yes

?? Is the adjacent node in

99 Link
I !

no

Set status of ports
to failed

ves
h failed node set ??

no

Try to enable link from
hi p9rt to adi node

enabled ??

yes

Set status of ports to activ_
Set node config of spawning

port to out boar_!
Update config table starting

with target node and its
new inboard port
Set link enable
tn TRI TF, "

exit

Subprogram: ADD NODES TO QUEUE
Inputs: next entry
Outputs: target queue

Set top to zero
Set next entry tO one

while << top is not equal to next entry >>

Assisn node at top of queue to current node
for << each)on in current node >>

?? Is this an outboard port which is adjacent to a node ??
no yes

Put this node in next entry slot
Increment next entry by one

Increment top by one

Software Specification Reference Number: 3.1.2.3

227

Subprogram:REPAIR_LINK_OR_NODE_FAILURE
Inputs: none
Outputs: n o n e

Set
re-

config
suc-

cessful
to TRUE

Disconnect link going to inboard port of failed root of failed tree
Mark port status records to reflect failed link

Call reconnect to find alternate, direct link to this node via a spare oort
?? New link to failed node found by reconnect ??

no

yes

Deselect
this node
transaction

Mark status
of this

node failed
9? Is failed

node a
root node ??

yes aq
Call

discon-

nect
root

link
Set

re-

config
SUC-

cessful

to TRUE

?7 Failed node count equal one ??

n9
lniIigliz¢ vgrigl_l¢_ to allow

r_connectiQn via branch
Call add nodes to queue for each outboard

oort connected to root of failed tree

Set newbranch connected to TRI, IE & repair comolete
I_QFALSE _ $.e(anv not reconnected to TRUE

while << not repair complete and new branch
eonn¢¢_¢d and any not reconnected >>

?9 I_ _her_ _noth_r branch to try reconne_tion t9 ?_
y_ no

C011 reconnect to brach for this branch
99 (_onnection to branch successful 99

I t " °

y_ , _ no
Set new branch connected to TRUE

?? Root of failed tree reachable ??

),es

Set Repair

complete to TRUE
set any not

reconnected
to FALSE

no

Remove nodes
in this

branch from
failed node

set

?? Any I_r;_n9h¢_ not r¢_onnected ??

Y¢_
Set status of nodes in these branches to failed

D0_¢1_91_ _ta_u_ _ran_l_ion 9f l_hese nodes
Set configuration of ports in these nodes to idle port

,99 Arq_ any 9f _h_ nogl_ r99_ nodes ??

Y*_
Mark _tatu, of interface ¢0nn¢¢ted to root node failed ios

Call disconnect root link using active IOS

no

no

yes

no

?9, I_ root 9f foil¢gl treq_ r¢_onnected ??

n9
Mark status 9f ihi_ n9¢_ failed

D¢_qd_Zt the status transaction of this node
Set conf,_'t_ttion of oorts in l_hi_ node to idle port

99 I_ _hi_ nQgl¢ _ root node ??

ye_
Mark stotus of interfa_9 ¢Qnngeted t0 this node as failed

Call disconnect root link using IOS adjacent to this node

Software Specification Reference Number: 3.1.2.3

228

Subprogram: REMOVE FAILED NODE AND RECONNECT TO TREES
Inputs: none
Outputs: n o n •

7? Failed node is _tftiye root node ??

n o] yes
I

I Switch rQgt link_
Initialize variables which allow reconnection to trg¢_

Attempt to disconnect all outboard port links of failed node
,Update status and configuration of ports

et new branch connfcted to TRUI
while << new branch connected >>

Set new branch connected to FALSE
i

for << each unconnected branch >>
Select branch to reconnect

Call reconnect to branch
?7 Reconnection successful 77

J

no yes
Disconnect this branch from failed node

J

Remove the active nodes in this branch

from set of isolated node s
Set new branch connected to TREE

77 Any branches not reconnected 77

rt 0 yes
Fail nodes in these branches

Set reconfiguration successful to TRUE

Subprogram: RECONNECT OR REMOVE OR REGROW
Inputs: none
Outputs: n o n •

77 Failgd npd_ i# active root node 77

no J yes_witch root link
Call remove failed node and reconnect to trees

ves

Select
full

growth
option

Regrow
network

t fr m r um ! failed node
77 Babbler or interface failure nr errnr_ not detected 7?

no

f r<< a hidl rt>>
[Attempt to reconnect failed node via this port

'v_ Link enal_l_d _
tt **

n o yes
Update status and configuration records

(these were marked failed and now
need to be set to active and

outboard respectively) ,,,
77 Node reconnected ?7

Ye _ no
Mark status of node 'failed

Set reconfiguration successful to TRUE

Software Specification Reference Number: 3.1.2.3

229

f NE'I'WORK_MANAGER_UTILrrIF__

C . SPAWNING_QUEUE_INDEX

C SPAWNING_QUEUE_TYPE
I

(_

(_ i PACKED_OPCODES

NUMBER_OF_RESIDUE_BITS(
|

PACKED_NUMBER_OF_RESIDUE_BITS

_. PORT STATE
i

PORT_ARRAY

PACKED_PORT_ARRAY(
(RE,SPONSE_SOURCE TYPE

(" ERROR_CONDITION_TYPE

(_DE_TYPE

(PACKED=OPCODE=TYPE

(' CONFIGURATION_LIFETIME

(PACKED_CONFIGURATIONLIFETIME

(" RESET_STATUS_REGISTERS_TYPE

(PORT_ENABLE_TYPE

(" PACKED_PORTENABLETYPE

NODE_MESSAGE=TYPE

PACKED_NODE_MESSAGE_TYPE

(
i

(
PORT_STATUS_ARRAY

(NODE_RESPONSE_TYPE

PACKEDNODE_RESPONSE_TYPEC
[ENABLE_LINK

|

[DISCONNEL_

[WRITE_STATUS_FOR_FAILED_NODE

PACK_NODE_MESSAGE

!

UNPACK_NODE_RESPONSE

NODE_CONFIG_CWID

STANDARDMONITOR_FRAME

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

]

I
I
I
I
I
I

Software Specification Reference Number: 3.1.2.3

230

Subprogram: ENABLE_LINK
Inputs: i/o network identifier

network topology
current channel
contention option
from_node

outboart port
to_node
inboard port
max tries

node configuration
link_enabled

chain report

Outputs: link_enabled
chain report

Set un commands for outboard and inboard ports
Reoeat until link enabled eouals TRUE 9r tri¢_ ¢x_¢ed_ max tries

Link enabled := FALSE and confimar¢ nodes to enable link
?? babbler detected or transmission errors ??

yes n o
Disconnect Test for babbler
to node and
from node

?? Was the babbler detected ??
no yes

Set link enabled Disconnect to_node & from node

Software Specification Reference Number: 3.1.3.1,3.1.3.3

231

Subprogram: DISCONNECT

Inputs: i/o network identifier
network topology
node configuration
from_node

outboard port
to_node
inboard port
current channel

contention option
Outputs: none

I Set up a command to to node to disable inboard port
Set up a command to fron_node to disable outboard port

Call configure nodes to send the commands

Subprogram: WRITE_STATUS_FOR_FAILED_NODE

Inputs : failed node
network topology
network status

Outputs: network status

Set the node status to failed

for < each port >
Set the port status to failed
?? case adiacen_ ¢lcmcn_ ??

my gpc claannel node otlaers
Set interface status of Set the adj. port null

adj. lOS to failed IOS status to failed

Software Specification Reference Number: 3.1.3.1 3.1.3.3

232

Subprogram: NODE_CONFIGURATION_COMMAND

Inputs: configuration lifetime
node address

desired .port configuration
Outputs: node message

Assign node address field of node message the value of address

_,ssi_n node field of opcode field of node message a value of reconfigure port:
Assign status message field of opcode field of node

message a value of status register
Assign error field of opcode field of node message a value of valid

Assign residue bytes field of opcode field of node message a value of three
Assign lifetime field of port enable field of node

message a value of configuration lifetime
Assign clear status field of port enable field of node message a value of clear

For << each port >>
?9 Is the desired nort configuration of this nor/ idle nort ??

-ryes no

Turn corresponding port enable off Turn corresponding port enable on
Return node message

Subprogram:

Inputs:
Outputs:

STANDARD_MONITOR_FRAME
node address

node message

Assign node address field of node message the value of address

Assign mode field of opcode field of node message the value of report status
Assign the status message field of opcode field

of node message the value of status register
Assima the residue bit field of opcode field of node message the value of three

Assign the lifetime field of port enable field of
node message the value of once only

Assign the clear status field of port enable
field of node message the value of clear

Assign each port field of port enable field of node message the value of off
Return node message

Software Specification Reference Number: 3.1.3.2

233

Subprogram: CODED_NODE_ADDRESS

Inputs: node address
Outputs: encoded node address

Initialize max value to 255

Return (max value minus node addresss)

Subprogram: MESSAGE_SUM_CHECK

Inputs: node message
Outputs: node check sum

n° I

n°I

Initialize tcmp sum to node address from node message
Add encoded address tO temp sum

.9? Is temp sum greater than or equal to modulus .97
yes

Subtract modulus from temp sum
Add opcode to temp sum

?.9 Is tcmp sum greater than or equal to modulus .97
yes

Subtract modulus from temp sum
Add port enable tO temp sum

.9.9 Is temp sum _reatcr than modulus ?.9

-yes
Subtract mq tern tm
Return modulus minus tern ;urn

Subprogram:

Inputs:
Outputs:

PACK_NODE_MESSAGE
node message
packed node message

Convert internal representation of fields of node message

to bit mapped representation required by node
Call message sum check to append check sum

Return packed representation of node message

Subprogram: UNPACK_NODE_RESPONSE

Inputs: packed node response
Outputs: node response

Convert bit mapped representation of fields of packed

node response to internal representation
Return internal representation of node response

Software Specification Reference Number: 3.1.3.2

234

5.0 CONCLUSIONS AND RECOMMENDATIONS

The Advanced Information Processing System (AIPS) Input/Output Network Software has

been designed, implemented and tested on the centralized configuration of the AIPS

engineering model. This network management software manipulates the large number of

possible interconnections between the circuit switched nodes to maximize the system's

overall reliability and survivability. The responsibilities of this software include the

following: initial growth of a network, establishing active paths to each functional node;

periodic testing of each node in order to determine if the node is accessible; detecting faults

in the network; periodic cycling of spare links in the network to ensure that they are fault

free; reconfiguring the network to isolate faulty components; and re-establishing

connections to nodes which have been repaired. It is composed of 19,994 lines of Ada

source code. The source code includes 8,604 Ada statements (which may take more than

one line) and comment statements. The source code and global variables use 370,748 bytes

of memory.

5.1 Testing Of Network Manager Software

Initial testing of the network management software was done by randomly injecting faults

• into the links, nodes, root nodes and IOSs. The network status display and error logs were

used to monitor these tests. The software correctly identified and reconfigured the network

in all tests. Performance and reliability metrics for the centralized AIPS system have not

been measured as yet. They need to be gathered and evaluated under fault free and

degraded conditions of the network.

5.2 Future Work

After the performance metrics are gathered and evaluated for the network hardware and

software, the timing or bandwidth bottlenecks will be uncovered. Additionally, there are

known areas where software performance can be improved. For example, the most time

consuming identification procedures are those that require a regrow of the network, such as

the identification of the faulty node when a node fails active. The babbler and the node

which responds out of turn are two examples of active node failures. The latter example, a

node which answers to an address other than its own, requires network regrowth with full

diagnostics. Other failures that use the regrowth with diagnostic testing algorithm for

identification and reconfiguration are those faults whose source is not identified during

periodic status collection.

If the fault is a babbler, the network is regrown without diagnostic testing since the

detection and isolation of a babbler does not require these tests. A babbler is an active fault

and includes a stuck on high condition detected by the IOS at its receiving interface to the

network. In the present algorithm, the cost of regrowing a network of N nodes in the

presence of a babbler is N + P chains, where P is the number of spare ports on the faulty

235

node that must be tried until a non-faulty one is found. A faster algorithm could be

designed which would reduce this cost in the case of networks that are either maximally

branching or fully linear. In the latter case a binary search could be used. The node in the

middle of the bus would have its outboard port disabled and the location of the babbler

would be deduced from the continued presence or absence of babbler symptoms after this

reconfiguration. For the maximally branching network, a similar search could be

conducted on each outboard branch of a node. If disabling the port which leads to a branch

eliminates the babbler's symptoms, then that port is the gateway to the branch of the

network containing the babbler. However, the network configuration may be a mix of

these two basic patterns. The cost of finding the babbler is then not only a function of the

number of chains necessary to identify and isolate the babbler, but also the cost of deciding

on which type of search to employ. The decision as to which algorithm is least expensive

depends on the number of nodes in the network. More analysis of the problem is needed to

make an informed choice and develop an algorithm that meets the performance and

reliability requirements of the system.

Regrowth with testing is performed in the cases where the network manager software is

unable to identify the type of fault or the faulty component. Examples of these are faults in

the switching logic which are configuration dependent and some types of the talk out of

turn faults. (In some cases, the talk out of turn node is identified by the manager and it is

simply removed from the network.) In the case where a talks out of turn node is not

identified by the manager, the time consuming regrowth with testing algorithm is used for

fault identification. If an identification algorithm were developed that could always

determine when a fault is due to a node responding out of turn, then the regrow with testing

algorithm would not be necessary for this type of failure. Instead, the manager could

respond with a simpler reconfiguration strategy.

The use of the regrowth and other time consuming algorithms for fault diagnosis and repair

can require inordinate computational intensity which may take the network off-line for more

than one I/O cycle. This potential lack of availability might require a parallel network to

meet the performance and reliability requirements of the application. These adversities arise

primarily because the sender of a transmission cannot be identified with certainty, a relayer

of a transmission can mutate a messagewithout certainty of detection, and a noisy node or

babbler cannot be identified without lengthy diagnosis and reconfiguration procedures. In

addition, unlike other CSDL-designed AIPS building blocks, the networks are not

Byzantine Resilient, nor can they be made so without massive network replication.

Therefore, they are not demonstrably resilient to malicious faults, so the network

validation process does not benefit from the theoretical rigor ofth_ Byzantine Resilience

approach to fault tolerance. An appropriate communication protocol might assist in

reducing the computational and communication overhead involved in diagnosing and

repairing network faults, and might also allow the construction of Byzantine Resilient

networks. To determine the feasibility of such an approach, a study is needed to examine

several potentially applicable authentication schemes and ascertain their computational and

236

communicationoverhead,probability of failure, and other performance measures.

Transient fault analysis is another area requiring further research and development. In

particular, it is difficult to distinguish between an intermittent failure and a transient. At

present, automatic retries of chains are used to identify transient faults, but nothing is done

for the intermittent fault, which will appear to the manager as a transient. To deal with

intermittent faults a system of demerits could be employed. When a fault is detected, but

does not reappear in the retry, a demerit could be charged to the hardware causing the error,

if that can be determined, or to the entire network if a more specific cause cannot be found.

If the demerit is assigned to the entire network and the network eventually fails below a

certain threshold, sections of the network could be taken off line, one at a time, in order to

isolate the fault. Another area requiring further research is determining the amount of time

to Wait between retries. If the chain is retried immediately as in the present algorithm, a

transient of a long duration is declared a permanent fault. Since no recovery is attempted

until the faulty component is repaired, that resource is lost. Since 50 to 80 per cent of

fauks are typically transients, the network fault detection algorithms need to be expanded to

include transient/intermittent fault analysis and tested with the actual hardware by

simulating intermittent and transient faults.

Networks are grown at initialization time from the network databasel At present that

database is staile. An algorithm should be developed to support a dynamic database. In

such a case the software could determine the actual physical network topology dynamically.

If a new network is connected after system startup, it then would be possible to add it to

the system with an operator command. A dynamic database would also allow a graceful

addition of new nodes and links to an existing network.

Finally, algorithms need to be developed for handling errors which are observed by one

site of a regional network, but not at the site hosting the Network Manager. This is

especially important for the Inter-Computer Network Manager.

237

6.0 REFERENCES

°

o

o

4.

J.H. Lala, A. Ray, R. Harper, "A Fault and Damage Tolerant Network for an

Advanced Transport Aircraft," American Automatic Control Conference, San Diego,
CA, June, 1984.

G. Nagle, "An Ada Implementation of the Network Manager for the Advanced

Information Processing System," The First International Conference on Ada

Programming Language Applications for the NASA Space Station, Houston, TX,

June, 1986.

G. Booch, Software Engineering with Ada ®, the Benjamin/Cummings Publishing

Co., Inc., Menlo Park, CA, 1983.

I. Nassi and B. Schneiderman, "Flowchart Techniques for Structured

Programming", Department of Computer Science, State University of New York at

Stony Brook, New York, August, 1973.

PRECEDING PAGE BLANK NOT [_LMED

239

APPENDIX A: GLOSSARY OF IJO NETWORK TERMS

Network Hardware

Node: a circuit switching device with 5 ports which can each be independently enabled or

disabled. An enabled port retransrnits the logical OR of all data which has been received by

any other enabled port. The retransmission is carried out with minimal delay, nominally

one half the period of the transmission clock.

Device Interface Unit. (DIU): The smallest unit addressable by an application on an I/O

network. DIUs may be single devices (such as sensors or actuators) or collections of such
devices.

IOP: I/O Processor.

CP: Computational Processor.

GPC: General Purpose Computer consisting of an IOP, a CP, and their interfaces to I/O

and IC networks.

I/O Sequencer (IOS): A state machine whose function is to conduct the physical aspects of

communication on an I/O network for a GPC. The IOS communicates with one channel of.

a GPC by means of a Dual Ported Memory. The IOS executes a program which has been

stored in (DPM) by the IOP. Part of the DPM behaves as a set of control and status

registers for the IOS. Once a program has been stored in the DPM, communication between

the IOS and GPC can be conducted by means of the control and status registers. It is

possible to store programs in the DPM for future execution and then in real time it is only

necessary to update the data required by these programs. Input data must be exchanged

across redundant channels for source congruency and output data must be voted to provide

fault masking. Each IOS is a simplex device which performs its function asynchronously

from other IOSs and from the GPC to which it is connected.

Network Interface: the hardware involved in the connection between a GPC and a network.

It consists of an IOS, 8 K bytes of dual ported memory, and a link (called the root link)

connecting the IOS to a network node (called the root node).

I/O Network: a set of nodes and DIUs which are physically interconnected.

I/O Network Topology: The specific interconnections among the nodes, GPCs and DIUs in
an I/O Network.

A-1

Virtual Bus: A network whose nodes have been configured to allow communication

between a GPC and DIUs or nodes on that network to emulate communication on a serial

bus.

Network Classification

I/O Service: A logical organization imposed on I/O network use. A service may be

designated as Regional or Local.

Regional I/O Service: I/O activity conducted on a single I/O Network which is shared

among several GPCs. Since only one GPC may use the network at any given time, GPCs

must contend for use of the network.

Local I/O Service: I/O activity conducted on an I/O network which is used exclusively by

one GPC. If an I/O network which is part of a Local I/O Service is physically connected to

more than one GPC, exactly one of those GPCs will be included in the service at any given

time. A change in the GPC included in the service constitutes a function migration.

Redundant I/O Network: a set of I/O networks connected to the same GPC. Each network

in the set consists of a set of corresponding, redundant devices (sensors and effectors). It

is not required that these devices be interconnected by the same topology. TO support

function migration, each network in the set may have corresponding connections to more

than one GPC. However, during normal operation, access to this set of networks is

reserved exclusively for one GPC.

Redundant I/O Service: A special form of Local I/O Service where I/O activity is conducted

on a set of Redundant I/O Networks. This is the only type of service supported on

Redundant I/O networks. The intent of this service is threefold:

1) to provide simultaneous access to redundant devices on redundant networks

during no fault conditions

2) to increase the bandwidth of the physical I/O networks communicating with

redundant external devices.

3) to provide applications an uninterrupted flow of I/O data during periods of

network reconfiguration activity.

Network Protocols

HDLC Protocol: The bit oriented protocol conducted on the data link of the communication

hierarchy.

General I/0 Protocol: The protocol followed between the IOS and nodes and DIUs for the

purpose of conducting I/O transactions. All transactions begin with a command frame sent

A-2

from the IOS to a node or DIU. A node always returns a response frame. A DIU is not

required to return a response frame.

Network Traffic

Frame: An HDLC frame. The smallest unit of communication between an IOS and an

external device (node or DIU) on an I/O network.

HDLC FRAME FORMAT

l l--Ico-
_'- Frame

Flag Field: 01111110

Address Field: 1 byte

Control Field: I byte

Data Field: 1-122 bytes

I ISequence Rag

-I
RB O-7bits

FCS Field: 2 bytes

Command Frame: A frame sent to a single node or DIU from an IOS using the HDLC

protocol. See Figure ?? A command frame to a node is distinguished from a command

frame to a DIU by the number of residual bits which are transmitted. A node command

frame has three residual bits while a D1U command frame has zero residual bits.

Response Frame: A frame sent to a GPC from a node or DIU using the HDLC protocol.

See Figure ?? A response frame from a node is distinguished from a response frame from a

DIU by the number of residual bits which are transmitted. A node response frame has three

residual bits while a DIU response frame has zero residual bits,

I/O Transaction: A command frame which may be followed by a response flame. A node

always returns a response frame. A DIU is not required to return a response frame.

I/O Chain: An ordered set of one or more transactions addressed to devices on one I/O

network. A chain consists exclusively of either node transactions or DIU transactions. A

chain is the smallest unit of I/O activity conducted by an IOS for a GPC.

Redundant Chains : A set of I/O chains designed to execute in loose simultaneity on a set of

redundant I/O networks. The transactions within each chain are in a one to one

correspondence with the transactions in the other chains. This reflects the one to one

correspondence of redundant DIUs among the networks.

A-3

I/O Request: A setof oneor more I/0 chainseachof which executeson adifferent I/0
network.An I/O requestconsistsexclusivelyof onesetof redundantchains or of oneset
of non-redundantchains.An I/O requestis thesmallestunit of I/0 activity conductedby
I/O SystemServicesfor auser.

Chain Execution: The activity carried out by an IOS which results in the transmission of

command frames and the reception of response frames on an I/0 network. Theprogram

which an IOS executes is under the direct control of I/O System Services and the indirect

control of the user specifying the chain. When a user creates a chain of transactions, certain

parameters must be specified which control the execution of the chain. I/0 System Services

then translates these specifications into a program which is stored in DPM and which

executes when I/0 System Services starts that chain. The activity is initiated by I/0 System

Services but executes independently of the program running in the GPC.

A-4

APPENDIX B: I/O SERVICE OPERATING RULES: NETWORK TOPOLOGY, GPC

CONNECWIVITY AND I/O REQUEST DEFINITION

I/0 Service: Definition and Operation

1.) An I/O Service provides access either to one regional network or to a set of one or more local

networks.

2.) An I/O Service to a set of local networks operates those networks in parallel.

3.) I/O Requests are specific to one I/O Service. It consists of a set of chains, at most one per
network within the service.

4.) All chains in an I/O Request are started at the same time. The I/O Request is completed, and data

becomes available to a user, when all chains within the reques t are completed.

5.) Chains on paraUel neworks can be used to allow corresponding devices on each network to be

accessed at approximately the same time. The degree of simultaneity which can be achieved is

determined by three factors: the rate at which the IOS samples its Interface Command Register, the

amount of time required to issue a Start Chain command, and the reproducibility of the response time

for corresponding external devices.

6.) A network is out of service from the time errors are detected on that network until a

reconfiguration has been effected. In this context, a reconfiguration consists of either a network

interface switch or a network re.configuration. When a network is out of service, no user chains are

executed on that network, however, service to other networks in that I/O Service is not affected.

7.) Node status collection and spare link testing will be conducted simultaneously on all

parallel networks within an I/O Service.

Network Topology Rules

1.) Nodes will b¢ connected in a way which would require at least 3 port failures to isolate

any node or set of nodes from the rest of the network. This is the so called "minimum cut

set "

2.) At most one DIU will be connected to a node.

3.) At most one GPC will be connected to a node.

4.) A node may be connected to both a GPC and a DIU.

B-1

5.) Parallelnetworksneednot be connected in identical ways nor do they need to contain

the same number of nodes or the same number of DIUs. In this way, user can trade

throughput for reliability.

GPC Connectivity and Network Interfaces

1.) A network has at most one interface per GPC channel, i.e. redundant root links to a

network from a GPC come from distinct channels. Thus the maximum number of network

interfaces connecting a GPC to a network is equal to the number of channels in the GPC.

2.) Parallel networks are local networks in that they are used exclusively by one GPC for

normal operations for long periods of time. However, more than one GPC may be

physically connected to these networks and are therefore capable of taking over control and

use of these networks in repsonse to failure conditions. These spare connections are made

ready and initialized as if they were to be used but remain dormant until activated by some

higher controlling process such as the system manager.

3.) Redundant network interfaces (i.e. root links to the same network) must have their

IOSs occupy corresponding address spaces within their respective channels. This facilitates

dual ported memory testing and allows modifications to chain programs and chain data to

be made simultaneously to all redundant interface to the network.

CORRECT redundant rc_t link connection of a GPC to a network

\
C

A

2

B

3 1 2

\
Network

K3S
3

C

EE; K3S
1 2

\
3

B-2

INCORRECT redundant root link connection of a GPC to a network

A B C

lOS los los lOS lOS lOS los lOS los
1 2 3 1 2 3 1 2 3

Network 1

I/0 Request Definition

1.) I/O Request Definitions determine whether an I/O Service is being used for reliability

or throughput. They may access redundant devices simultaneously for greater reliability or

they may access non-redundant devices for greater throughput.

2.) An I/O Request may run chains on a subset of networks in an I/O Service, however,

unused networks in the service remain idle during the execution of the request.

B-3

APPENDIX C: INPUT OUTPUT SEQUENCER (IOS)

1.0 OVERVIEW

The Input Output Sequencer (IOS) is an autonomous asynchronous interface between an

AIPS General Purpose Computer (GPC) and an I/O network. It resides on the shared bus

of the GPC and can be accessed by either the Computational Processor (CP) or the I/O

Processor (IOP). A major function of the IOS is to carry out detailed communication with

I/O devices on the network as well as with the network nodes, off-loading the GPC from

lower level I/O functions. A simplified block diagram of the AIPS I/O organization is

shown in Figure 1.

The IOS is connected to a node of the I/O network via a bidirectional connection, which is

called a root link. When activated by the GPC, the IOS can transmit on the network via its

root link. The IOS is a memory mapped device that can be accessed and/or programmed by

the CP or the IOP to perform a sequence of instructions which is called a chain. The

memory locations within an IOS form a dual port memory that can be accessed by the

processors or the IOS. GPCs preload data into this memory for transmission to Device

Interface Units (D1Us) or nodes. The IOS interfaces with the DIUs and nodes in a

command response mode, which is referred to as a transaction. During a transaction the

IOS transmits a command to a DIU or node and then, if required, waits a predetermined

time for a response. The IOS writes response data into the locations of memory specified

by the GPC in the chain. An IOS executes a chain only when it is enabled by its GPC.

Each channel of a redundant GPC may contain an IOS. These IOSs, if connected to

separate independent networks, can all be active simultaneously. However, if all of the

IOSs are connected to the same I/O network, then only one should be enabled to wansmit at

a time. A GPC channel may also contain more than one IOS for redundancy. When an

lOS is commanded to start, it first contends (polls) with all other active IOSs for the use of

the network if that network is shared among several GPCs. If it wins, it then has exclusive

use of the network and can send and receive messages to DIUs and nodes. If an IOS

loses, it waits for the network to be quiet (no data traffic) for a f'Lxed amount of time or for

another poll to start before contending again. Provision is made within the IOS for starting

a poll without waiting if a failure is perceived on the network.

A detailed explanation of the components of the IOS follows. It includes a description of

the instruction format, memory assignments, register definition as well as chain examples
for the IOS. For the purpose of this document a chain is defined as the instructions that are

executed as a unit. All inso'xuctions within the IOS are 4 bytes long. All values are given in

hexadecimal unless othe_rwise specified.

C-1

\

|

11

ql

Figure 1. AIPS I/O Organization

C-2

GPC

4F

ADDRESS MA

MUX

SOL FIX

'_"_sS[

ME.MORY
t-P

8KX8

q ADDRESS IDECODER

I+bSTATUS
REGISTER

MD
m

GPC
INPUT
LATCH

q GPC
OUTPUT
LATCH

d
q
H

PD

3--

,osI'--n_iPUT
LA'H3H

LATCH

__ INTERFACE J
COMMAND J

REGISTER J

FLAG
SHUTDOWN

" ROOTLINK

DRIVERS
&

RECEIVERS

DB ENGAGE

DATA
COUNTER

DATA
REGISTER

ADDRESSREGISTER

ADDRESSCOUNTER

SEQUENCER

Figure 2. IOS Block Diagram

C-3

2.0 IOS ORGANIZATION

A block diagram of the IOS isshown in Figure 2. The IOS isprogrammed from a GPC

which has access to thedual port memory and hardware registers.After loading the

memory with the requiredchainsthe GPC then startsthe IOS. The IOS can then polland

run the chainswithout GPC intervention.An overview of the major components of the

IOS isgiven below.

2.1 MEMORY CONTROLLER -- The memory controller arbitrates memory accesses

from the GPC and the IOS. The memory is time shared between them by the use of

processor signal 4F. When 4F is high the processor can access the memory and when 4F

is low the IOS can have access. The memory controller generates chip select, read write

and output enable at the appropriate times.

2.2 ADDRESS MULTIPLEXER m The address multiplexer selects between the GPC and

IOS address buses. The output of the multiplexer is the memory address bus (MA). When

4F is high the processor address bus is connected to memory and when 4F is low the IOS

memory bus is connected to the memory.

2.3 MEMORY m The IOS memory is a byte addressed memory containing 8192 bytes. It

is used to store the chains, input packets and output packets. The first two bytes of

memory are used as the solicited chain pointer and the second two bytes are used as the

unsolicited chain pointer.

2.4 GPC INPUT LATCH _ The GPC input latch is a buffer driver used to input byte

wide data from the GPC data bus (PD) to the memory data bus (MD).

2.5 GPC OUTPUT LATCH _ The GPC output latch is a buffer driver Used to output data

from the memory bus (MD) to the GPC data bus (PD).

2.6 IOS INPUT LATCH-- The IOS input latch is a buffer driver used to input byte wide

data from the internal IOS data bus (DB) to the memory data bus (MD).

2.7 IOS OUTPUT LATCH _ The IOS output latch is a buffer driver used to output data

from the memory bus (MD) to the internal IOS data bus (DB).

2.8 ADDRESS DECODER -- The address decoder decodes the individual hardware

registers which are located in the memory space between 10 and IF. The addresses of the

hardware registers is given in section 4.

2.9 INTERFACE COMMAND REGISTER _ The interface command register is a write

only register that contains the commanded mode. See section 5.3.1 for a detailed

description of the possible modes.

C-4

2.10 SEQUENCER-- The sequenceris the main control elementof the IOS. When
started,the sequencerfetchesthe instructionsfrom memory, storesthem internally,
decodesandexecutesthemicrocyclesby generatingtheappropriatecontrolsignals.

2.11 CHAIN STATUS REGISTER -- The chain status register is a read only register that

contains the chain and contention logic status within the IOS. See section 5.2.1.2 for a

detailed description of the status reported.

2.12 ADDRESS COUNTER m The address counter stores the current memory address

that the IOS is using. This address points to where the chain instructions are located in

memory. During an input instruction it points to the location where the incoming data byte

is to be stored. In an output instruction it points to the byte to be output when the HDLC

chip requests a byte. It is loaded during instruction fetches and incremented during the

instruction microcycles.

2.13 ADDRESS REGISTER -- The address register contains the fixed addresses used in

the instructions. During an input instruction it contains the address of the HDLC input

register. During an output instruction it contains the address of the HDLC transmitter

holding register.

2.14 DATA COUNTER m The data counter contains data that is incremented during an

instruction. During an input instruction it accumulates the byte count of the incoming data.

During an output instruction it counts the number of bytes outputted until the message is

complete at which time it signals the sequencer to terminate the instruction.

2.15 DATA REGISTER _ The data register is used to temporarily store data within an

instruction. During an input instruction it holds the incoming byte from the HDLC receiver

register until a memory cycle can be performed to store it. During an output instruction it

holds the next byte to be outputted until the HDLC transmit holding register requests it.

2.16 HDLC _ The HDLC device contains independent transmitter and receiver sections.

The HDLC transmitter section receives the data bytes, appends opening and closing flags,

encodes, and transmits the data. The receiver section searches the data stream for an

opening flag. When it detects one, it synchronizes with the data fields and decodes the data

stream into bytes for storage. In both modes thedevice generates the handshaking signals

necessary to run the interface. See Sections 5 for details on the operation and control of the

HDLC registers.

2.17 FLAG SHUTDOWN _ The flagshutdown logic guarantees that the external IO

network transmissions lines are always left in the same state after use. This allows the data

and poll logic to utilize the same transmission lines. See section 6 for details.

C-5

2.18DRIVERS and RECEIVERS m These drivers and receivers allow the IOS to interface

to the IO network. The drivers are enabled by an engage line from the GPC. The receivers

arc always enabled but the input is controlled by the HDLC device.

2.19 POLL LOGIC -- The poll logic allows the IOS to contend with other IOSs to gain

control of the IO network. When enabled, the poll logic monitors the IO network waiting

for a quiet time and then starts a poll. When it wins it starts a solicited chain, but if it loses

it waits for the next poll or quiet time and tries again. See section 7 for additional details.

2.20 TIME DRIVER -- The time driver allows the chain to read the time byte that appears

on the shared bus.

3.0 INSTRUCTION FORMATS

The IOS can execute a limited number of instructions to perform its functions. The

following paragraphs detail the form and function of the IOS instructions.

3.1 NOP (0000 0000) _ This instruction updates the chain pointer to the address of the

next sequential instruction. At the end of the NOP it will fetch that instruction.

3.2 BRANCH (2000 dddd) m This instruction will fetch the instruction contained at

location 'dddd' and begin its execution. The Chain Pointer will be updated to point to the

next instruction (dddd+4).

3.3 MOVE (40ss dddd) -- This instruction will move a byte, located at any address 'ss'

within the first 25610 bytes of IOS memory, to the byte address specified by 'dddd'.

MOVE can be used to store the current value of a hardware register or store a preset value

into a register.

3.4 MOVE IMMEDIATE (60xx dddd) _ This instruction allows a constant, xx, to be

stored into the destination address dddd.

3.5 INPUT (801B dddd) -- This instruction will store incoming HDLC bytes in the

buffer area starting at address 'dddd'. At the start of execution of this instruction the byte

reserved for the input byte count is set to zero and the current value of the contention status

is also stored within the buffer. As bytes are received they are stored at sequential

addresses within the specified buffer locations and an internal byte count is incremented. A

valid message always ends with a closing flag, which causes the IOS to then store the byte

count, I-IDLC status registers and the TIME byte within the incoming packet buffer area.

The INPUT instruction has now completed and the next sequential instruction is fetched

and executed. The maximum number of data bytes that a single instruction can store is

12210. If the INPUT contains more than 12210 data bytes, data will be lost. However, the

buffer will never exceed the 12810 bytes allotted to it. The byte count which includes the

C-6

status bytes, will also never exceed 80 (12810). This instruction can be terminated if the

time allotted for response is exceeded (the value programmed into the timer is reached

without a data byte being received). However, in this situation none of the status

information (I-IDLC IR & SR registers, time and byte count) is saved. An incoming data

packet will always have the following format.

Byte count

HDLC IR register

HDLC SR register

TIME byte

contents of Chain Status Register

data (f'wst byte)

data (last byte received)

3.6 OUTPUT (E01C ssss) -- This instruction will transmit the bytes specified in the

buffer starting at location 'ssss + 1'. The In'st byte at location 'ssss' contains the value of

the expression, 80 - NB, where NB is the number of bytes to be transmitted. This

instruction terminates when all the bytes have been transmitted.

4.0 MEMORY MAP

The following is the assigned memory locations in the dual port memory space of the IOS.

Addresses 10 -1F are hardware registers, however they are addressed the same as the

RAM locations. All memory addresses, including the hardware registers are accessible
from the CPU.

ADDRESS FUNCTION

0 R/W
1 R/W

2 R/W

3 R/W

10 R

11 W

12 W

13 W

Solicited Chain Pointer - High Byte (RAM)

Solicited Chain Pointer - Low Byte (RAM)

Unsolicited Chain Pointer - High Byte (RAM)

Unsolicited Chain Pointer- Low Byte (RAM)

Chain Status Register

Interface Command Register

Timer Limit Register

Poll ID Register - 6 bit polling address

C-7

14 W

15 R

16

17

18 R/W

19 RAV

1A RAV.

1B R

1B W

1C R

1C W

1D R

1E

1F

Poll Prio Register-3 bit prio & polling level

Time Byte

Reserved

Reserved

HDLC Control Register 1 (CR1)

HDLC Control Register 2 (CR2)

HDLC Control Register 3 (CR3)

HDLC Receiver Holding Register (RHR)

Address Register (AR)

HDLC Interrupt Register (IR)

Transmit Holding Register(THR)

I-IDLC Status Register (SR)

Reserved

Reserved

With the exception of the addresses specified above, the rest of the dual port memory space

can be used for any desired function. However, it should be noted that the MOVE

instruction can only use the f'wst 25610 addresses for the source byte.

5.0 REGISTERS

A description of the hardware registers and their use is contained in the following

paragraphs. The hardware can execute two types of chains, solicited and unsolicited.

Solicited chains are defined as command response chains and are meant to be executed

when the GPC has control of the network. Unsolicited chains are defined as those that are

performed when the GPC does not have control of the network but must accept all frames

addressed to it. Unsolicited chains are not defined on the IO network, however, they are

used as a vehicle while waiting for a poll to be won. On the IC network using the ICIS,

unsolicited chains are executed whenever the GPC does not have the network, including

while waiting for a poll to be won.

5.1 READ/WRITE REGISTERS

5.1.1 CHAIN POINTER REGISTERS

5.1.1.1 SOLICITED CHAIN POINTER (ADDR - 00 & 01) -- The solicited chain

pointer is used by the IOS to indicate where the next instruction of a solicited chain is

located. When a new chain is to be started, this location is loaded with the address of the

fh-st instruction to be executed. It must be loaded before an execute chain comm_tnd is

issued. As each chain instruction is fetched, this location is updated to point to the next

sequential instruction. The GPC can read this location at any time. However, since the

IOS writes the locations a byte at a time and the GPC can read them as a word, the value

read by the GPC may be incorrect if a chain is executing. The GPC should not attempt to

C-8

write these bytes while a chain is executing, since it cannot be guaranteed that the IOS is

not presently also modifying them.

5.1.1.2 UNSOLICITED CHAIN POINTER (ADDR = 02 & 03) -- The unsolicited

chain pointer is used by the IOS to indicate where the next instruction of an unsolicited

chain is located. When a new chain is to be started, this location is loaded with the address

of the first instruction of the unsolicited chain to be executed. It must be loaded before an

execute chain command is issued. As each chain instruction is fetched, this location is

updated to point to the next sequential instruction. The GPC can read this location at any

time. However, since the IOS writes the locations a byte at a time and the GPC can read

them as a word, the value read by the GPC may be incorrect ff a chain is executing. The

GPC should not attempt to write these bytes while a chain is executing, since it cannot be

guaranteed that the IOS is not presently also modifying them. Unsolicited chains are

identical to solicited chains and can execute any mix of instructions.

5.1.2 HDLC READ/WRITE REGISTERS

The following is extracted from the Western Digital data sheets on the HDLC chip (WD

1935). Definitions of bit polarity and sense have been modified to reflect what is seen by

the AIPS system.

5.1.2.1 CONTROL REGISTER #1 (CR1) (ADDR = 18) -- Control register I is used to

specify the transmitter parameters and the transmitter and receiver enables. It can be loaded

by a GPC or by a MOVE instruction in the chain.

NOTE: This register must always be loaded after CR2 and/or CR3. If CR2 and/or CR3

are ever changed, CR1 must again be reloaded after the change even if there are no changes
being made to CR1.

7 6 5 4 3 2 1 0

ACT ACT TC TC TCL TCL DTR MISC

REC TRAN 1 0 1 0 OUT

5.1.2.1.1 ACT REC (bit 7) _ Activate receiver bit when set to a ZERO (0), the receiver

is enabled to accept a data stream. When set to a ONE (1), the receiver will ignore any
frames on the network.

5.1.2.1.2 ACT TRAN (bit 6) m Activate transmitter bit. When set to a ZERO (0), the

encoder and transmitter are enabled to output data onto the _¢twork. When set to a ONE

(1) the I-IDLC device will not transmit data.

C-9

5.1.2.1.3 TC1 andTC0 (bits5 and4) -- Thetransmitcommandbitsprogramthe device

into the requested mode. In AIPS, the OUTPUT instruction will function properly only in

the data mode. These bits and the modes that they generate are as follows:

bit bit MODE FUNCTION

5 4

1 1 data

1 0 abort

0 1 flag

0 0 FCS

Outputs the contents of the transmitter

holding register

Generates an abort message (not used

on AIPS)

Transmits one flag character (not used

on AIPS)

Generates the two CRC bytes and a

closing flag (not used on AIPS)

5.1.2.1.4 TCL1 and TCL0 (bits 3 and 2) m These bits control the number of bits per

character from the transmitter. In AIPS this has been defined as 8 bit bytes. The definition
of these bits follows:

bit bit BITS PER

3 2 CHARACTER

1 1 8

1 0 7

0 1 6

0 0 5

5.1.2.1.5 DTR (bit 1) m Data Terminal Ready, a modem signal that is not used in this

design and should be programmed to a ONE (1).

5.1.2.1.6 MISC OUT (bit 0) _ Miscellaneous Output, a control signal not implemented in

this design and should be programmed to a ONE (1).

5.1.2.2 CONTROL REGISTER #2 (CR2) (ADDR = 19) _ Control register #2 specifies

the receiver parameters and other control functions as defined below. It can be loaded by a

GPC or by a MOVE instruction in the chain.

7 6 5 4 3 2 1 0

EXT ADDR EXT RCL RCL LOOP SELF

CONT COMP ADDR 1 0 TEST

AUTO

FLAG

C-I0

5.1.2.2.1 EXT CONT (bit 7) -- This bit extends the HDLC control field. It is not used

on AIPS and must be programmed to a ONE (1).

5.1.2.2.2 ADDR COMP (bit 6) w This bit enables the on-chip address comparator. If set

to a ZERO (0), the first byte after the opening flag will be compared to the byte stored in

the AR register. If equal, the data bytes that follow will be output. If address compare is

enabled, and the address does not compare, all data bytes following will be ignored. If bit

six is set to a ONE (1) then address comparison is not performed in the chip and all bytes

between the opening and closing flag are presented to the interface. In AIPS, the IOS and

the NODES do not use the address compare function but the ICIS does.

5.1.2.2.3 EXT ADDR (bit 5) -- This bit extends the HDLC address field. It is not used

on AIPS and must be programmed to a ONE (1).

5.1.2.2.4 RCL1 and RCL0 (bits 4 and 3) -- These bits specify the receiver character

length. In AIPS this has been defined as 8 bit characters. The definition of these bits is as

follows:

bit bit BITS PER

4 3 CHARACTER

1 i 8

1 0 7

0 1 6

0 0 5

5.1.2.2.5 LOOP (bit 2) -- Specifies HDLC loop mode, a test function, not implemented

in the IOS. This bit should always be programmed to a ONE (1).

5.1.2.2.6 SELF TEST (bit 1) -- Chip diagnostic mode, not implemented throug h the

IOS. This bit should always be programmed to a ONE (1).

5.1.2.2.7 AUTO FLAG (bit 0) -- When this bit is set to a ZERO (0) and the transmitter is

enabled, the chip will issue constant flag characters between frames. The IOS design

utilizes this function and therefore must be set to a zero during an output instruction.

5.1.2.3 CONTROL REGISTER #3 (CR3)(ADDR -- 1A) -- This register is used to

control the number of residual bits in a transmission. It can be loaded by a GPC or by a
MOVE instruction in the chain. The definiff6"_s of these bits are as follows:

C-11

7 6 5 4 3 2 1 0

X X X X X TRES TRES TRES

2 1 0

5.1.2.3.1 BITS 7 through 3 -- Unused

5.1.2.3.2 TRES 2 - 0 (bits 2, 1 and 0) -- These bits define the number of residual bits to

be sent as the last character in a transmission. Messages sent to and from a NODE contain

three (3) residual bits. Messages to and from DIUs contain no residual bits. The definition

of these bits are as follows:

bit bit bit

2 1 0

RESIDUAL BITSNRAME

1 1 1 No residual bits sent

1 1 0 1

1 0 1 2

1 0 0 3

0 1 1 4

0 1 0 5

0 0 1 6

0 0 0 7

5.2 READ ONLY REGISTERS

5.2.1.1 CHAIN STATUS REGISTER (ADDR = 10) -- This register contains status of

both the chain and the contention logic.

CHAIN STATUS REGISTER (Read Only)

7 6 5 4 3 2 1 0

Chain Contention Possession Data Poll Any Any

Comp State Default Tx Tx Rcv Rcv

Fail Fail Fail Good

5.2.1.1.1 CHAIN COMPLETE (bit 7) _ This bit is set whenever the current chain has

completed. Chain complete is defined as an IOS transition from solicited mode to

unsolicited mode without the _'9..,L bit in the command register set. It is reset whenever

the poll bit is changed to a one in the interface command register or the IOS transitions from

the unsolicited mode to the solicited mode.

C-12

5.2.1.1.2 CONTENTION STATE (bits 6 and5)-- This is thepresentstateof thepoll
logiconly. Thefollowing arethepossiblestatesthatcanbeindicated.

5.2.1.1.2.1 INACTIVE, BUS RELEASED(00)-- Both bits are zero whenever the IOS

is not attempting to gain control of the network.

5.2.1.1.2.2 WAIT (01) -- This IOS has been instructed to acquire the network, however

no POLL has started since the request occurred.

5.2.1.1.2.3 ATTEMPTED (10) -- This IOS has entered and lost at least one POLL

sequence since being commanded to acquire the network.

5.2.1.1.2.4 POSSESSES (11) --This IOS presently has possession of the network.

5.2.1.1.3 POSSESSION DEFAULT (bit 4) -- Indicates that the IOS possesses the

network and detected an incoming POLL length bit on the network. If a chain is in

progress when this happens, it will continue to completion. This bit is reset whenever the

POLL bit in the Command Register is set to zero.

5.2.1.1.4 DATA TX FAIL (bit 3) _ Indicates that a data bit was detected at the receiver

during a command frame transmission. The chain will continue to completion. This bit is

reset whenever the POLL bit in the Command Register is set to zero. This bit can only be

set during a network possession.

5.2.1.1.5 POLL "IX FAIL (bit 2) _ Indicates that a data length bit was detected during a

Poll Sequence. This bit is reset whenever the POLL bit in the Command Register is set to
zero.

5.2.1.1.6 ANY RCV FAIL (bit 1)_ Indicates that at least one response frame has been

received with a protocol error in it. It is reset whenever a new poll begins or the IOS
transitions from the tmsolieited mode to the solicited mode.

5.2.1.1.7 ANY RCV GOOD (bit 0) -- Indicates that at least one response frame has been

received without a protocol error. It is reset whenever a new poll begins or the IOS

transitions from the unsolicited mode to the solicited mode,

5.2.2 HDLC READ ONLY REGISTERS

5.2.2.1 RECEIVER HOLDING REGISTER (RHR) (ADDR -- 1B) -- This read-only

register contains the received bytes as they are decoded from the frame. When executing an

input instruction the IOS automatically reads this location and stores the received bytes into

the specified location in the dual port memory.

C-13

5.2.2.2 INTERRUPT REGISTER (IR) (ADDR = 1C) -- This read-only register

contains status information on the state of the HDLC operation. It can be read by the GPC

or with a MOVE instruction within a chain. Bits 7 through 3 will accumulate information

such that if the IR is read after several operations, it will have the "OR" of all those frames.

The definition of the bits within this register is as follows:

7 6 5 4 3 2 1 0

REOM REOM XM1T XM1T

NO WITH NO WITH

ERR ERR ERR URUN

DISC DRQI DRQO INTRQ

5.2.2.2.1 REOM NO ERR (bit 7) m When equal to a ZERO, this bit indicates that the

frame was received without errors. If this bit is read before the closing flag is detected, it

will not have been updated from the last frame.

5.2.2.2.2 REOM WITH ERR (bit 6) -- When equal to a ZERO, this bit indicates that the

frame was received with errors. If this bit is read before the closing flag is detected, it will

not have been updated from the last frame. The errors that are reported here are: CRC,

overrun, invalid frame and aborted frame.

5.2.2.2.3 XMIT NO ERR (bit 5) m When equal to ZERO, this bit indicates that the

transmitted fi'ame had completed without underrun errors.

5.2.2.2.4 XMIT WITH URUN (bit 4) m When equal to ZERO, this bit indicates that the

transmitted frame had extra bytes inserted by the chip because the data was not available to

the transmitter in the allotted time.

5.2.2.2.5 DISC (bit 3) _ This bit is used with modems and in this system has no

meaning.

5.2.2.2.6 DRQI (bit 2) _ When set to a ZERO, this bit indicates that there is a byte

available in the Receiver Holding Register (RHR). Reading the RHR sets this bit to a

ONE. The hardware uses a buffered copy of this bit when storing bytes into dual port

memory during an input instruction.

5.2.2.2.7 DRQO (bit 1) _ When set to a ZERO, this bit indicates that the Transmit

Holding Register (THR) is empty and requires another character to prevent an underrun

error. Storing a byte into the THR sets this bit to a ONE. The hardware uses a buffered

copy of this bit during an output instruction to read a byte from the dual port memory and
store it into the THR.

C-14

5.2.2.2.8 INTRQ (bit 0) m This bit is set to a ZERO whenever at least one of bits 3-7 in

the IR register is set to a ZERO. This bit is set to a ONE whenever the IR is read. A

buffered copy of this bit is used to terminate a normally completing input or output
instruction.

5.2.2.3 STATUS REGISTER (SR) (ADDR -- 1D) m This read-only register contains

status information that, when used in conjunction with the contents of the Interrupt

Register, define the cause of the error.

7 6 5 4 3 2 1 0

RI CD DSR MISC RCVR RRES RRES RRES

IN IDLE 2 1 0

/ERR /ERR /ERR

5.2.2.3.1 RI (bit 7) -- A modem signal not implemented in this interface.

5.2.2.3.2 CD (bit 6) -- A modem signal not implemented in this interface.

5.2.2.3.3 DSR (bit 5) -- A modem signal not implemented in this interface.

5.2.2.3.4 MISC IN (bit 4) -- An input discrete not used in this interface.

5.2.2.3.5 RCVR IDLE (bit 3) _ When set to a ZERO, the receiver is idle, i.e. a frame is

not in process.

5.2.2.3.6 RRES2/ERR (bit 2) _ This bit has a dual role. If bit 7 in the Interrupt

Register is a ZERO, then this bit is part of a binary number (see section 5.2.2.3.8)

representing the number of residual bits received. If bit 6 in the Interrupt register is set to a

ZERO, and this bit is set to ZERO then an aborted or invalid frame was detected.

5.2.2.3.7 RRES1/ERR (bit 1) -- This bit has a dual role. If bit 7 in the Interrupt

Register is a ZERO, then this bit is part of a binary number (see section 5.2.2.3.8)

representing the number of residual bits received. If bit 6 in the Interrupt register is set to a

ZERO, and this bit is set to ZERO then an overrun error Was detected. An overrun error

indicates that a received byte was not removed from the Receiver Holding Register before

the next byte was received. That f'wst byte will be lost.

5.2.2.3.8 RRES0/ERR (bit 0) _ This bit has a dual role. If bit 7 in the Interrupt

Register is a ZERO, then this bit is part of a binary number (see below) representing the

number of residual bits received. If bit 6 in the Interrupt register is set to a ZERO and this

bit is set to ZERO, then a CRC error was detected.

C-15

bit bit bit RESIDUALBITS/FRAME
2 i 0
I I I No residual bits sent

I 1 0 I

I 0 1 2

1 0 0 3

0 1 1 4

0 1 0 5

0 0 1 6

0 0 0 7

5.2.3 TIME (read only) (ADDR = 15) m This byte contains a value that is slaved to the

system timer, incremented by a 6610 microsecond clock and capable of measuring

16.83010 milliseconds. It can be read by the GPC or by a move instruction in the chain. It

is automatically appended to all incoming frames that complete in a valid manner.

5.3 WRITE ONLY REGISTERS

5.3.1 INTERFACE COMMAND REGISTER (Write Only) (ADDR - 11) m This

register contains the necessary control bits to operate the IOS. The following are valid

commands used to control the IOS. The END CHAIN command transitions the IOS from

solicited to unsolicited mode. The STOP CHAIN command turns the IOS off.

START CHAIN WITH POLL - 94

START CHAIN WITHOUT POLL = 80

END CHAIN = 84

STOP CHAIN = 20 (followed by a 00 command to prime the interface for

the next command)

INTERFACE COMMAND REGISTER (Write Only)

7 6 5 4 3 2 1 0

EXECUTE X STOP POLL SPOLL EXECUTE X X

CHAIN IMM UNSOL

CHAIN

5.3.1.1 EXECUTE CHAIN (bit 7) m When only the execute chain bit is set to a one (1),

this commands the hardware to fetch and start executing instructions starting at the address

stored in the Solicited Chain Pointer. The chain will start even if a Poll was neither started

nor won. If however, a poll is to be won fin'st before starting the chain, then bits 7, 4 and 2

C-16

mustbe setto aone. Thehardwarewill thenstartthepolling logic, startan unsolicited
chain pointed to by the unsolicited chain pointer (usually an input instruction) and when a

poll is won, automatically start the chain at the location pointed to by the solicited chain

pointer.

5.3.1.2 Bit 6 - Not used by the IOS.

5.3.1.3 STOP IMM (bit 5) m When the stop immediately bit is set to a one (1) the

hardware will turn off the IOS. Whatever function the IOS is now performing will be

terminated. This allows the GPC to stop the hardware if it is caught in a loop or otherwise

malfunctioning.

5.3.1.4 POLL (bit 4) -- Whenever the poll bit is set to a one (1) the logic will attempt to

gain control of the network by joining the next possible poll sequence. At the end of a
chain this bit must be reset.

5.3.1.5 SPOLL (bit 3) -- Whenever the spoU bit is set to a one (1), the hardware will

immediately start to poll. The hardware will not wait for the start of a new poll from

another site or an idle condition on the network. At the end of a chain this bit must be

reset.

5.3.1.6 EXECUTE UNSOL CHAIN (bit 2) -- This bit is only recognized by the

hardware when set in conjunction with the execute chain bit, bit 7. If bits 7 and 2 are both

set to a one (1), the hardware will execute the chain starting at the location pointed to by the

unsolicited chain pointer. If a GPC desires to fh'st gain control of a network, it sets bits 7,

4 and 2 to a one and all others to a zero (0). The hardware will enable the polling logic,

start the unsolicited chain at the location pointed to by the unsolicited chain pointer (usually

an input instruction) and when a poll is won, automatically start the chain at the location

pointed to by the solicited chain pointer.

5.3.1.7 Bits 1 and 0 are not used.

5.3.2 HDLC WRITE ONLY REGISTERS

5.3.2.1 ADDRESS REGISTER (AR) (ADDR --1B) m This write-only register contains

the address that the chip is to use for comparison if on-chip address recognition is being

used. If on-chip address detection is not used, the contents of this register will be ignored.

This register is not used by the IOS.

5.3.2.2 TRANSMIT HOLDING REGISTER (THR) (ADDR -- 1C) _ This write-only

register holds the next data byte to be transmitted. The hardware loads a byte into this

register during an Output instruction whenever DRQO is set.

C-17

5.3.3 TIMER LIMIT REGISTER(Write only) (ADDR -- 12)-- Thetimer lirnit register
containsthecurrentvalueto beusedto timeoutaninstruction. A non-zerovaluewrittento
thetimer limit register allows the timer to function. The timer is initialized at the beginning

of each instruction and as each incoming data byte is detected. If an instruction does not

complete or an incoming data byte is not detected in the programmed number of

microseconds, the current instruction is terminated and the next sequential instruction

started. A new value stored in the timer limit register will be utilized when the next

instruction is started or the next incoming byte is detected during an input instruction.

5.3.3.1 TIMER LIMIT VALUE -- The timer limit is the number of periods of the clock

2F. 2F has a period of approximately 2 microseconds. The timer, therefore, has an

approximate range of 2 to 512 microseconds.

5.3.4 POLL REGISTERS

5.3.4.1 POLL PRIORITY REGISTER (Write only) (ADDR - 14) _ The Poll Priority

Register contains the six high order polling bits. The three bits labeled PRIO, are used for

the initial priority of this IOS. They will automatically increment after each poll sequence

loss until they contain all ones, at which time incrementing is inhibited and the maximum

priority held. Since the initial state of the PRIO bits are not saved, this register must be

reloaded whenever the initial polling state is required. The three bits labeled LEVEL, are

the high order bits of the poll sequence. For the IO network LEVEL 2 is set to a one,

LEVEL 1 and LEVEL 0 are set to a zero. It can be loaded by a GPC or by a MOVE
instruction in the chain.

7 6 5 4 3 2 1 0

X LEVEL LEVEL LEVEL X PR.IO PRIO PRIO

2 1 0 2 1 0

5.3.4.2 POLL ID REGISTER (Write only) (ADDR -- 13) _ The Poll ID register

contains the six (6) low order bits used in the polling procedure. These bits normally

contain the address that this IOS uses for polling. It can be written into by the GPC or by a

MOVE instruction within the chain.

7 6 5 4 3 2 1 0

X X BIT5 BIT4 BIT3 BIT2 BIT1 BIT0

(MSB) (LSB)

C-18

?

6.0 FLAG SHUTOFF SYNC

The IOS uses the same IO network lines to communicate and to poll. In order to be able to

perform both functions on the same lines all operations must leave the lines in a known

state. The HDLC protocol allows the signalling lines to be left in either state, and in fact

the device used to generate the HDLC protocol does leave the line in either state depending

upon the data content of the message. The IOS contains logic, which upon sensing the end

of a message, utilizes the closing flags to turn off with the line in a low state without

generating any extraneous edges. When the next output message is started, the first flags

are used to turn the logic back on to the state that the HDLC device attempted to leave the

line. Again this is done without generating any extraneous bits. The polling logic is

fabricated so as to always end with the line low.

7.0 POLLING

The IOS contains logic which allows it to contend with the other IOSs for use of the IO

network. If the IOS is to contend for the network, the bits in the interface command

register must be set tO execute, poll and execute unsolicited mode. The logic will start the

chain pointed to by the unsolicited pointer and simultaneously prime the polling logic. The

reason for having a unsolicited chain is to give the IOS a place to wait for the poll to

complete. Therefore, there must be an input instruction without the timer running where

the IOS will "hang" waiting for the poll to be won.

The polling logic waits for either a poll to begin or the bus going quiet for 512

microseconds. When either occurs, the logic will assert a start bit for 24 microseconds.

This gives all other IOSs time to recognize the start of a poll and join if required. At the

end of the poll bit the logic compares the state of its input line with the state of its output

line. If another IOS is joining the poll, the input line will also be high and the IOS must

continue to poll to determine who will win. It next asserts the f_ed priority bits, one at a

time for 24 microseconds, followed by the variable priority bits and its address bits. At the

end of each 24 microsecond period it compares its output to what it perceives on the bus.

If what it hears is the same as what it is transmitting it must continue to the next bit as no

decision can be made. If it hears a zero while it is transmitting a one, then it knows it has

won because ithas a higher value than all others that are contending. If it hears a one while

it is transmitting a zero, then it knows it has lost because it has a lower value than at least

one other contender, and it will stop transmitting and walt for another poll to begin. When

the IOS decides that it has won it will abort the unsolicited chain and perform a context
switch to the solicited chain and start to execute it.

The variable priority bits are incremented after each poll sequence loss until they reach the

maximum value of 7. They will remain at this value until written into by the program or the

chain. If an IOS detects a data bit during its polling it will terminate the poll and set an
error bit.

C-19

8.0 DUAL-PORT OPERATION

The IOS utilizes a time shared 8k x 8 memory for program and input output buffer storage.

This memory can be alternately accessed by the GPC and the IOS. Each site has

independent access to the memory for four CPU clock periods.

8.1 TIMING The dual-port memory utilizes the CPU clock signal 4F, which has a period

of eight CPU clocks. When 4F is high the GPC has access to the memory and when 4F is

low the IOS has access to the memory. In the following discussion the IOS timing is

discussed. The GPC timing is identical, happen!ng on the opposite phase of 4F.

If the IOS requires the use of the memory it assert the signal MREQ. MREQ is recognized

on the first rising edge of CPU clock after 4F falls, which causes a chip select to the

memory to be asserted. (4F changes state on a falling edge of CPU clock.) Chip select is

three clock periods wide. The memory cycle is terminated by MCLR being asserted for

one CPU clock period and chip select being deasserted. MCLR causes MREQ to be

deasserted.

When a write is specified, the read/write line will be low. One clock period after chip select

is asserted, a write enable signal to the memory is asserted. If a read is specified, the

read/write line will be high and on the next rising edge of CPU clock after chip select is

asserted, an output enable will be asserted. By delaying output enable, none of the

memory switching transients are seen.

The operation of the dual-port memory from the GPC side is identical except the memory

request is initiated with the falling edge of PSEL and terminated with the assertion of

CLRP. The GPC can only make memory requests during the time that 4F is high. The

address multiplexers are also driven by 4F.

9.0 HDLC PROTOCOLS

The HDLC bit orientated protocol was chosen for use on AIPS. HDLC allows automatic

address detection, control information and a cyclic redundancy error word to detect

transmission errors. In the IOS automatic address detection and the control byte are not

used. The IOS operates in a command response mode at all times. It sends a message to a

site and then waits for a response only when it has control of the IO network.

An HDLC frame contains an opening flag, address byte, control byte, data bytes (in AIPS

up to 11910), FCS byte, FCS byte and a closing flag. The openitlg and closing flag are

identical and consist of a zero, followed by six ones and a zero. It is not possible for a flag

to look like data since the HDLC protocol specifies that within the data field after five

continuous ones a zero is added.

C-20

10.0 ENGAGE

The AIPS GPCs generate a voted engage signal which is used to enable external functions.

In a faulty GPC this signal will not be asserted. The IOS uses this signal to enable its bus

driver that connects it to the IO network. Therefore, a faulty GPC and/or faulty IOS can be

disconnected and prevented from bring down the IO network.

1L0 BUFFER FORMATS

A typical chain will contain both input and output instructions. Each of these instructions

must have buffer areas within the IOS's memory. The input buffers contain the messages

that the IOS receives from Nodes and DIUs. The output buffer areas contain the messages

that the IOS sends to Nodes and DIUs. There are no restrictions on where in memory

inputs or output are stored. The following is the format of the input and output messages.

11.1 INPUT BUFFER FORMAT: The third and fourth byte of the input instruction point

to a location in memory where the IOS will store an incoming message. Each incoming

message contains a five byte preamble before the data part of the message. The first byte

contains the byte count, which is the number bytes received plus the four additional bytes

of the preamble. This can be used as an offset to point to the last byte of the buffer. If the

input instruction is terminated by the timer expiring, then this byte will contain zero even if

a partial message had been received before the message stopped. The second and third

bytes contains the HDLC IR and SR registers respectively. These bytes are used to check

for HDLC protocol errors. The fourth byte contains a time tag as recorded at the end of the

input instruction. The fifth byte contains the contents ofthe Chain Status Register. From

the sixth byte on is the data content of the message. To recap, input buffers within the

memory all have the following format:

Byte Count

HDLC IR Register

HDLC SR Register

T'IlI_

Content of Chain Status Register

data (fh-st byte)

C-21

data(lastbyte)

In the case of a response from a Node the input format will be as follows:

Byte Count

HDLC IR Register

HDLC SR Register

Tam

Content of Chain Status Register

Node Address

Port Activity Seen

Transmission Errors Seen

Valid Frame Seen

Error in Node Messages Seen

Node Port Configuration

Sum Check

Residue Bits (3 bits residue + 5 bits FCS)

FCS (next 8 bits of FCS)

FCS (last 5 bits of FCS + 3 bits of pad)

11.2 OUTPUT BUFFER FORMAT: The third and fourth bytes of the output instruction

contain the address within the IOS memory of the output buffer for this instruction. The

first byte located at this address is 80 - NB, where NB is the number of bytes in this

output message. Following the byte count is the rest of the message. Since the longest

message that can be received k_c been defined as 12810 bytes, and each input message

contains a 5 byte preamble and 2 FCS bytes, the maximum data part of an output message

can only contain 12110 bytes. If more than 12110 bytes are specified, the receiving location

will truncate the message. The format of the output buffer is as follows:

C-22

Byte Count(80 - NB)

data

last data byte

12.0 EXAMPLE CHAINS

The following are intended to show how a Chain is programmed in the IOS.

12.1 EXAMPLE #1 -- This example shows a chain which programs the HDLC chip and

then does an Output frame followed by an input frame. The GPC stores the following

values into the lOSs memory. (The lOS is a byte oriented device. For simplicity, the

columns value or contents are two bytes and the columns labled lOS location or address

show the address of the high order byte. i.e. 0100 @ 8CX000 means that a 01 is stored at

location 8CX000 and a 00 is stored at location 8CX001. The value of X indicates in which

channel of a GPC the lOS is located, i.e. X - 1 for channel A, X = 2 for channel B, X = 4

for channel C. The high order bit of X is the high order bit of the address of the dual-port

memory.)

The GPC writes the following locations:

xx 8CX013

4y 8CX014

94 8CX011

Value of low order poUing bits

Value of high order polling bits

Commands 10S to execute chain, execute unsolicited and

poll

The last store writes into the interface command register which insmacts the lOS to enter a

POLL as soon as it detects one starting, or to start a POLL if it sees the bus go idle. The

IOS meanwhile starts to execute the unsolicited instructions starting at location 200. As

soon as this lOS thinks it won a POLL, it terminates the unsolicited chain and starts the

solicitedchain atlocationlot),(All valuesbelow are.given inHEX.)

INST # ADDRESS CONTENTS DESCRIPTION

8CX000 0100

8CX002 0200

Solicited Chain Pointer

Unsolicited Chain Pointer

0005 8CXIO0 4015 MOVE the current value of

C-23

0006

0007

0008

00O9

0010

0011

0012

0013

8CX102

8CX104
8CX106

8CX108
8CX10A

8CX10C
8CX10E

8CX110
8CX112

8CX114
8CX116

8CX11C
8CX11E

8CX120
8CX122

8CX124
8CX126

01F1

401C
01F2

60FC
001A

60FE
0019

60BF
0018

EOIC
1000

607F

0018

401C

01F3

401D

01F4

C-24

time to location 01F1 (This could

be done to find out when the

solicited part of the chain started)

Read the IR register to clear

any prior status

Store an FC in CR3. Sets the

chip to send 3 residual bits.

Store an FE in CR2. Puts the

chip in the auto flag mode. This is

mandatory to guarantee that all

receivers will see the flag

character and no extraneous data.

Store a BF in CR1. This

enables the chip in the data mode

and turns on the transmitter. (CR1

must be loaded after CR2 and

CR3) Flags will now be sent until

data is loaded into the THR.

Enter the OUTPUT mode.

The byte count is read from

location 1000 and the data bytes

starting at location 1001 are

transmitted. When the byte count

reaches 80 the output instruction

ends.

Store a 7F in CR1. This

instruction turns off the

transmitter and turns on the

receiver.

Read the IR register and

store it in location 01F3. This will

clear the status before the next use

of the HDLC chip.

Read the SR register and

store it in• location 01F4.

0014

0015

0016

0017

0001

0002

0OO3

8CX128

8CX12A

8CX12C

8CX12E

8CX130

8CX132

8CX134

8CX136

8CX200

8CX202

8CX204

8CX206

8CX208

8CX20A

60FF

0012

801B

4000

60OO

0012

2000

0348

4015

01F0

6000

0000

801B

1F00

C-25

Store a FF in the timer

limit register and enable it to run

(Timer = 512 micro).

Enter the INPUT mode.

Location 4000 will be cleared to

accept the incoming byte count.

If no data is received the IOS will

wait here for 512 microsecond

before going on to instruction

#17. If any data byte is received

before a timeout, the timer will be

restarted. The IOS will stay in this

instruction until a closing flag is

received or the timer expires or in

the case of an infinite input

message the GPC terminates the

chain.

Disable the timer.

BRANCH to the next

instruction to be executed in this

chain at location 0348. (This is

an example of how bypassing

might be done. The next

executable instruction will be at

location 0348).

MOVE the current value of

time to location 01F0. (This could

be done to log the time that this

device was first enabled.)

Turn off the timer.

Enter the INPUT mode and

store the frame starting at location

1F00. In an lOS, the system will

hang at this instruction for a poll

to be won since there are no

unsolicited messages on the I/O

network.

0004 8CX20C 2000

8CX20E 0208

In an IOS there would be

only these two instructions. This

BRANCH allows the IOS to

return to unsolicited mode without

the need to restore pointers.

A possible way that a solicited chain could always end is the following, The last

instruction in the chain does a branch to a location that performs the desired chain

termination. The advantage of this is that the solicited chain pointer will always have a

known value in it whenever a chain has gone to completion.

nnnn xxxx 2000

xxxx+2 OFFO

This is the last instruction of the chain.

It specifies BRANCH to 0FF0.

8CXFF0 6084

8CXFF2 0011

This is an END CHAIN command.

It turns off the POLL and places the IOS in
the execute unsolicited mode. The solicited

chain pointer will contain the value 0FF4,

which can be used to verify that the chain has

completed.

C-26

APPENDIX D: NODE SPECIFICATION

The input output network is comprised of simplex nodes. Nodes are interconnected by

links. A node is a communication switching point with five input/output ports. Figure 1 is

a basic representation of a node. The internal construction of each port of a node is shown

in Figure 2. Since a node does not have knowledge of the configuration of the network it

must always have its receivers enabled. Reconfiguration commands can be accepted from

any port whether enabled or not. Configuration commands enable selected ports. Ports are

reconfigured whenever necessary and can be temporarily modified for single response

frames. As a message is received on an enabled port it regenerates and retransmits the

received data. At the same time, the message is decoded within the node. If the message is

addressed to thenode it responds to the command embedded within the data. If the

message is addressed elsewhere it checks for a valid transmission, latches observed error

conditions and resets the receiver for the next transmission.

Figure 1. AIPS NODE

Some components are unique to a port and some are shared by all the ports. Figure 2

shows the basic construction of a node. The components within the dotted lines are unique

to each port and are repeated five times. The components outside of the dotted lines form

the node control section and are not repeated. The following is a description of the basic

components of the node.

D-1

[_ To Other
Ports m

PROTOCOL IDECODER

V
Fro° other REGENERATION Port

ports LOGIC enable

I
FIFO

CLOCK

EXTRACTI ON

Port logic

i I
SEQUENCER ACTI VITY

REGISTER

I

PROTOCOL
ENCODER

TRRNSM IT IFIFO

i
PORT

ENABLE
REGISTER I__._ To port

regeneration

logic

Figure 2. NODE PORT

I)-2

Port Components (unique to each port)

1. Receiver

The receiver accepts the signal level on a link and converts it to the internal logic

level of the port. The receiver also isolates the node from electrical failures of the

link.

2. Protocol Decoder

The protocol decoder accepts the serial data stream from the receiver, checks for

protocol compliance and transmission induced errors. It then assembles the

message into parallel words utilizing its clock extraction section. These parallel

words are stored in a receive fifo for the control sequencer to examine.

3. Clock Extractor

Since the data transmission rate is 2 MHz, and all elements (GPC's, nodes,etc.) are

operating on independent oscillators, it is necessary to generate a clock for the

decoder. This clock is synchronized to the first edge of data that it sees and remains

usable for the maximum message length.

4. Signal Regeneration Logic

The signal regeneration logic is used to reconstruct the fidelity of the transmission.

The passage of the signal through circuit elements in the node and the variability of

the frequency of individual oscillators would degrade the signal if it were not

reconstructed in each node. After several transitions through circuit elements the

transmission could appear to be modified. The input to theregeneration logic is the

OR of all the enabled port receivers and the protocol encoder output. The output of

the regeneration logic is enabled or disabled by the port enable register and is

applied to the input of the port transmitter.

5. Transmitter

The transmitter converts the output of the regeneration logic into the signaling levels
used on the links.

Control Components (sha:'ed by all the ports)

1. Node Sequencer and Control

D-3

The node sequencer and control orchestrates the total operation of the node. It

scans the port receive fifo's for messages received from the links. If a message is

found, it checks the address byte to determine if the message is addressed to this

node. If it is, it then checks the bytes that follow the address byte to see if the rest

of the message conforms to a proper node message format. The message is acted

upon only if it passes all tests. The sequencer is capable of reading the input fifo's,

writing to the transmitter fifo, port enable register and message buffer.

2. Port Enable Register

The port enable register accepts the decoded commands from the sequencer and is

used to enable and disable the individual port reconstruction logic. The last

command is stored until rewritten by the next command. The contents of this

register is contained within the status message from the node.

3. Message Buffer

The message buffer is a 64 byte long RAM which can be written into by an

appropriate node command. The contents of this RAM can be returned by the Node

in place of a status message.

4. Port Activity Register

The port activity register is set whenever a transition is detected on the port receiver.

5. Transmit Fifo

The transmit fifo holds the node response message for application to the protocol

encoder.

6. Protocol Encoder

The protocol encoder receives the node responses and encodes them into the link

protocol. The output of the encoder is sent to the reconstruction logic of all the

ports.

D-4

Input Frame Message Format

The following is the format of an input frame sent to a node

1. Opening Flag

2. Node Address

3. Encoded Node Address

4. Operation Code

5. Port Enables and Control

6. Message Sum Check

7. Residue Bits

8. FCS

9. FCS

10. Closing Flag

13-5

Bit assignments within the transaction are as follows.

bit

Opening Flag

Node Address

Encoded Address

Op Code

Port Enable

Sum Check

Residue Bits

FCS

7 6 5 4 3 2 1 0

Node Address Bits

Encoded Node Address Bits

Stat Err Res
Mode Mode Mode MsgB

Chg Enb Clr E D C
Port Once Stat

I ! I

Sum Check Bits

Res Res

B A

Residue Bits

FCS High Byte

FCS FCS Low Byte

Closing Flag
0 1 1 1 1 1 1 0

o OPENING FLAG: As defined in the HDLC specification, used to synchronize and

separate transmissions. Recognized and extracted by the HDLC device.

2. NODE ADDRESS: The address of theNode to which this message is directed.

Q ENCODED NODE ADDRESS: The encoded address of the Node to which this

transaction is directed. It has been placed in the byte that HDLC has defined as control.

Since control code definition is defined by the user, in AIPS it will be used as the

encoded address to help shorten the response time and is the l's complement of the

node address.

I3-6

. OPERATION CODE: Contains the code for the function to be performed by the

addressed node. The following is the definition of those functions.

Bit 7 6 5 4

1 1 1 R

1 1 0

1 0

1 0 R

0 1 R

0 1 R

0

0

0

0

R

1 R

0

1

0

1

0

3

E

E

E

E

E

E

R E

R E

Modify Port Enable Register as
specified in next byte.

Reserved

Next byte to count register

Next byte to Address Reg H

Next byte to Address Reg L

Next byte to address

specified by Address Register

Next byte to address
specified by Address Register
then +1 to Address Register

No modification to Port Enable

Register (next byte ignored).

All valid input frames result in a response frame from the Node. The content of the

response frame is determined by the state of bit 4 as defined below.

Bit 4 R=I Respond from Status Register

R----0Respond from Message Buffer

The node can be commanded to send a response frame that contains a transmission

error for testing purposes. This faulted frame can occur in conjunction with any of the

above def'med modes. A faulted frame is one in which the transmission is truncated,

i.e. aborted. The choice of valid or faulted frames is determined by the state of bit 3 as
def'med below.

Bit 3 E--1 Respond with faulty Message

E=0 Respond with valid message

Modes 1, 2, 3, 4 and 5 are for specifying the parameters used to generate responses

from the message buffer. If a response is specified from the message buffer, the node

will respond with the number of bytes specified by the counter starting at the address

contained in the Address Register. The contents of the counter and Address Register

D-7

are not changed by a response request. The counter and Address Register are modified

as specified above using modes 3, 4 and 5. Modes 1 and 2 are used to load specified

memory locations within the Node. Mode 1, when specified, automatically increments

the address register after each byte is stored at the present location specified by the

address register. The Address register can only specify locations from 00C0 H to

00FF H, a total of 64 bytes. Mode 2 is used to specify memory locations in a random

access mode. Bits 2, 1, and 0 specify, in binary, the number of residue bits to be

generated in a response frame.

o PORT ENABLES AND CONTROL: If mode 7 is specified, in the opcode byte, this

byte is loaded into the port Enable register. If bit 7, of this byte, is set (=1) then the

port enable register is changed permanently. However, if bit 7 is not set and bit 6 is

set, the contents of the port enable register are modified for this transmission only. At

the completion of this transmission the previous contents are reloaded into the port

enable register. If both bits 7 and 6 are set at the same time, the node will respond as

if only bit 7 were set, i.e. the port enable register will be permanently modified. Bit 5,

if set, specifies that all status registers are to be cleared after this response is

completed.

. MESSAGE SUM CHECK: The contents of this byte is calculated such that an add,

modulo 256,of the Address byte, Encoded Address byte, OpCode byte, Port Enable

byte and this byte will yield a result of zero. It is computed at the source and verified

in the Node to check for errors outside the transmission medium.

. RESIDUE BITS: Used to differentiate Node messages from all other transactions.

There are three residue bits in a node message and the content of these bits is not

specified.

8. FCS: This byte contains the high byte of the FCS as calculated in the transmitter.

9. FCS: This byte contains the low byte of the FCS as calculated in the transmitter.

10. CLOSING FLAG: This byte is defined by HDLC as the transmission terminator or

separator. Detected and extracted by the HDLC device.

Oumut Frame Message Format

The node always responds after a valid input frame. The output frame can be generated

from e:_rhe,."the status register or the message buffer.

D-8

Output Frame From Status Register

When an output frame is requested from the status register it will take the following form.

1. Opening Flag

2. Node Address

3. Port Activity Seen

4. Transmission Errors Seen

5. Valid Frame Seen

6. Error in Node Messages Seen

7. Node Valid Frame Seen

8. Node Port Configuration

9. Sum Check

10. Residue Bits

11. FCS

12. FCS

13. Closing Flag

D-9

Bit assignmentswithin theOutputFramefrom thestatusregisterareasfollows.

bit 7 6 5 4 3 2 1

OpeningFlag

NodeAddress

Activity Seen

TransmissionErrs

Valid FrameSeen

NodeErrorSeen

NodeValidFrame

NodePortConfig

SumCheck

Residue

FCS

FCS

ClosingFlag

011 111111111
Node Address Bits

X X X

X X X

X X X

X X X

X X X

X X X

E D

E D

E D

E D

E D

E D

Sum Check Bits

0

0

Residue Bits

FCS High Byte

011
X=Reserved

C B A

C B A

C B A

C B A

C B A

C B A

FCS Low Byte

I l l I 11 1 [(

. OPENING FLAG: As defined in the HDLC specification, used to synchronize and

separate transmissions.

2. NODE ADDRESS: The address of this Node.

o

.

ACTIVITY SEEN: Whenever a transition on a link is detected at a port, whether

enabled or not, the corresponding bit in the byte is set to a 0. These bits remain set until

a clear status command is received in a valid input frame.

TRANSMISSION ERRORS: Whenever a Node detects a transrnission error this bit is

set for the corresponding port. These bits remain set until a clear status command is

received in a valid input frame.

D-IO

Q

Q

.

8.

VALID FRAME SEEN: Whenever a frame is seen without transmission errors the

corresponding port bit is set. These bits remain set until a clear status command is

received in a valid input frame.

NODE ERRORS SEEN: Whenever a frame is received addressed to this node without

transmission errors but with format errors it will not be honored by this node, the bit

corresponding to the port upon which it was received will be set. These bits remain set

until a clear status command is received in a valid input frame.

NODE VALID FRAME: Whenever a node responds to an input frame the

corresponding port bit in this byte is set. This bit is set before a response transmission

and cleared after the response transmission if a clear status command is received.

NODE PORT CONFIGURATION: This byte is normally set to the present state of the

port enable register. However, if the input transmission had requested a change of port

configuration for this transmission only (ENB ONCE bit set), then the byte is set to the

state to which the node will revert after this transmission.

. MESSAGE SUM CHECK: The contents of this byte is calculated such that an add,

modulo 256,of the Address byte, Activity Seen byte, Transmission Errors byte,Valid

Frame Seen byte, Node Errors Seen byte, Node Valid Frame byte, Node Port

Configuration byte and this byte will yield a result of zero. It is computed by the Node

to enable the receiving site to detect errors.

10. FCS: The FCS bytes are a cyclic redundancy calculation performed by the HDLC

transmitter and appended to the end of the frame.

11. CLOSING FLAG: The closing flag is the frame terminator.

Output Frame From Message Buffer

An output frame from the message buffer is intended to be used as a test tool. The output

frame information field contains the number of bytes specified in the counter starting at the

address in the Address Register. The eotmter and Address Register must have been

initialized prior to a request. The values in these registers remain unchanged until they are

rewritten. A byte count of zero will result in 256 bytes being transmitted. The output
frame will take the following form.

1. Opening Flag

2. Contents of Address specified by the Address Register

3. Contents of Address specified by the Address Register + 1

D-II

4, •

° •

6. Contents of Address Specified by the Address Register + Counter

7. Residue bits

8. FCS

9. FCS

10. Closing Flag

D-12

N/L.qA
Nao'_ Ae_r,_lcs
S_c:e eOn,n_fao"_

1. Report No.

NASA CR-181678

4. Title and Subtitle

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

Advanced Information Processing System:

Input/Output Network Management Software

7. Author(s)

Gail Nagle,

Linda Alger, and

Alexander Kemp

9. Performing Organization Name and Address

The Charles Stark Draper

555 Technology Square

Cambridge, MA 02139

Laboratory, Inc.

12. Spon_ring Agen_ NameandAddress

National Aeronautics and

Langley Research Center

Hampton, VA 23665-5225

Space Administration

May 1988

6. Performing Organization Code

8. Performing Organization Report No.

CSDL-R-2039

10. WorkUnitNo.

506-46-21-05

11. Contract or Grant No,

NASI-17666

13. Ty_ ofReponandPeriod Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplemen_w Notes

Langley Technical Monitor: Felix L. Pitts

This report was prepared for NASA Langley

NASI-17666.

Research Center under contract

16. Abstract

The Advanced Information Processing System (AIPS) uses a damage and fault

tolerantnetwork to allow communication bctwccn itsGeneral Purpose Processors (GPCs)

and itsI/O devices. Although the network pcrforms exactlylike a bus, itis far more
rcliablcand damage tolerantthan a linearbus. Because of therichnessof intcrconncctions

bctwccn the nodes which make up the bus, a faultycomponent can bc identifiedand the

network rcconfigurcdso as to isolatethe failedpartand restorefullcommunication to all
non-failedcomponents.

The I/O Network Manager isthe softwareprocessresponsibleforestablishingand

maintaining the communication path bctwccn processors and attachedI/O devices. The

methodology used in the design of the I/O Network Manager callsfor a statementof the

functional_uircmcnts ofthissoftwareprocess,followed by the softwarespecificationsof
the various parts of this module and their interactionwith other AIPS software

componcnts. All dataitems arc fullyspecifiedand structuredflow chartsarc gcncratcdfor

allthe logicrequiredby the specifications.The finalstepisthe implementation of the I/O

Network Manager logicasan Ada language program. This reportcovers allphascs of the
design proccss with some additionalinformation about the hardware used in the I/O

Networks of theAIPS Proof-of-Concept System.
17. K_ Wor_ (Sugge_ byAuthor(s))

Redundancy Management, Network Manager,

Fault and Damage Tolerant I/O Network,

Reconfigurable Bus, Reliable Communication

Fault Isolation, Fault Analysis,
Autonomous I/O

19. S_unw Classif.(ofthis mDo_; _.SecuriW Classif.(ofth_pa_)

Unclassified Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category 62

t

21. No. of pages

293

22. Price

A13

NASA FORM 1626 OCT 86

